-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode_tap_gnn.py
303 lines (265 loc) · 13 KB
/
node_tap_gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import argparse
from datetime import datetime
import itertools
import logging
import math
import os
import sys
import time
import dgl # import dgl after torch will cause `GLIBCXX_3.4.22` not found.
from dgl.nn.pytorch.conv import SAGEConv
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.nn import functional as F
from tqdm import trange
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score
from sklearn.utils import resample
from data_util import load_data, load_split_edges
from utils import get_free_gpu, timeit, EarlyStopMonitor, set_logger, set_random_seed, write_result
from util_dgl import construct_dglgraph
from tap_gnn import TAPGNNLinkTrainer, precompute_maxeid, prepare_node_dataset
# Change the order so that it is the one used by "nvidia-smi" and not the
# one used by all other programs ("FASTEST_FIRST")
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
class LR(torch.nn.Module):
def __init__(self, dim, drop=0.1):
super().__init__()
self.fc_1 = torch.nn.Linear(dim, 80)
self.fc_2 = torch.nn.Linear(80, 10)
self.fc_3 = torch.nn.Linear(10, 1)
self.act = torch.nn.ReLU()
self.dropout = torch.nn.Dropout(p=drop, inplace=True)
def forward(self, x):
x = self.act(self.fc_1(x))
x = self.dropout(x)
x = self.act(self.fc_2(x))
x = self.dropout(x)
return self.fc_3(x).squeeze(dim=1)
def stratified_batch(train_ids, labels, nbatch):
vals = list(np.unique(labels))
vids = [train_ids[labels == v] for v in vals] # edge_ids for each value
vsize = [len(ids) // nbatch for ids in vids] # batch_size for each value
for size, val in zip(vsize, vals):
assert size > 0, "Value {} is less than batch numbers.".format(val)
for idx in range(nbatch):
batch_ids = [ids[idx * vsize[i]: (idx + 1) * vsize[i]]
for i, ids in enumerate(vids)]
yield np.concatenate(batch_ids)
def balance_batch(train_ids, labels, nbatch, neg_ratio=1):
pos_ids = train_ids[labels == 1]
neg_ids = train_ids[labels == 0]
pos_ids = pos_ids.repeat(len(neg_ids) // (len(pos_ids) * neg_ratio))
train_ids = np.concatenate([pos_ids, neg_ids])
labels = np.concatenate([np.ones(len(pos_ids)), np.zeros(len(neg_ids))])
return stratified_batch(train_ids, labels, nbatch)
def eval_nodeclass(embeds, lr_model, eids, val_data, batch_size=None):
if batch_size is None:
batch_size = val_data.shape[0]
lr_model.eval()
val_data = val_data.iloc[:batch_size]
with torch.no_grad():
batch_embeds = embeds[eids]
logits = lr_model(batch_embeds).sigmoid().cpu().numpy()
labels = val_data["state_label"].to_numpy()
acc = accuracy_score(labels, logits >= 0.5)
f1 = f1_score(labels, logits >= 0.5)
auc = roc_auc_score(labels, logits)
return acc, f1, auc
def main(args, logger):
set_random_seed()
logger.info("Set random seeds.")
logger.info(args)
# Set device utility.
device = torch.device("cuda:{}".format(args.gid))
logger.info("Begin Conv on Device %s, GPU Memory %d GB", device,
torch.cuda.get_device_properties(device).total_memory // 2**30)
# Load nodes, edges, and labeled dataset for training, validation and test.
nodes, edges, train_data, val_data, test_data = prepare_node_dataset(
args.dataset)
logger.info("Train, valid, test: %d, %d, %d", (train_data["state_label"] == 1).sum(),
(val_data["state_label"] == 1).sum(), (test_data["state_label"] == 1).sum())
delta = edges["timestamp"].shift(-1) - edges["timestamp"]
# Pandas loc[low:high] includes high, so we use slice operations here instead.
assert np.all(delta[:len(delta) - 1] >= 0)
# Set DGLGraph, node_features, edge_features, and edge timestamps.
g = construct_dglgraph(edges, nodes, device, bidirected=True)
if not args.trainable:
g.ndata["nfeat"] = torch.zeros_like(g.ndata["nfeat"])
# # Initially, we build a C++ extension to compute the corresponding maximum
# # edge id of current timestamp.
# deg_indices = _par_deg_indices_full(g)
# for k, v in deg_indices.items():
# g.edata[k] = v.to(device).unsqueeze(-1).detach()
src_maxeid, dst_maxeid, src_deg, dst_deg = precompute_maxeid(g)
g.edata["src_max_eid"] = src_maxeid.to(device)
g.edata["dst_max_eid"] = dst_maxeid.to(device)
g.edata["src_deg"] = src_deg.to(device)
g.edata["dst_deg"] = dst_deg.to(device)
# Set model configuration.
# Input features: node_featurs + edge_features + time_encoding
# in_feats = (g.ndata["nfeat"].shape[-1] + g.edata["efeat"].shape[-1])
# tap = TemporalLinkTrainer(g, in_feats, args.n_hidden, args.n_hidden, args)
in_feat = g.ndata["nfeat"].shape[-1]
edge_feat = g.edata["efeat"].shape[-1]
tap = TAPGNNLinkTrainer(g, in_feat, edge_feat, args.n_hidden, args)
tap = tap.to(device)
logger.info("loading saved TGCL model")
model_path = f"./saved_models/TAP-GNN-{args.dataset}-{args.agg_type}-{args.gcn_lr:.4f}-layer{args.n_layers}-hidden{args.n_hidden}.pth"
tap.load_state_dict(torch.load(model_path))
tap.eval()
logger.info("TGCL models loaded")
start = time.time()
with torch.no_grad():
g.ndata["deg"] = (g.in_degrees() +
g.out_degrees()).to(g.ndata["nfeat"])
src_feat, dst_feat = tap.conv(g)
embeds = torch.cat((src_feat, dst_feat), dim=1)
logger.info("Convolution takes %.2f secs.", time.time() - start)
train_ids = np.arange(len(train_data))
val_eids = len(train_data) + np.arange(len(val_data))
test_eids = len(train_data) + len(val_data) + np.arange(len(test_data))
# train_embs = embeds[train_ids].cpu().numpy()
# val_embs = embeds[val_eids].cpu().numpy()
# test_embs = embeds[test_eids].cpu().numpy()
# np.savez(f'./saved_embs/{args.dataset}.npz', train_embs=train_embs, val_embs=val_embs, test_embs=test_embs)
# return None
logger.info("Start training node classification task")
lr_model = LR(args.n_hidden * 2).to(device)
optimizer = torch.optim.Adam(
lr_model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
train_ids = np.arange(len(train_data))
val_eids = len(train_data) + np.arange(len(val_data))
test_eids = len(train_data) + len(val_data) + np.arange(len(test_data))
batch_size = args.batch_size
num_batch = np.int(np.ceil(len(train_data) / batch_size))
epoch_bar = trange(args.epochs)
early_stopper = EarlyStopMonitor(max_round=10)
if args.pos_weight:
if args.sampling == "balance":
pos_weight = torch.tensor(args.neg_ratio)
else:
pos_num = (train_data["state_label"] == 1).sum()
neg_num = (train_data["state_label"] == 0).sum()
pos_weight = torch.tensor(neg_num/pos_num/10)
loss_fn = nn.BCEWithLogitsLoss(pos_weight=pos_weight)
else:
loss_fn = nn.BCEWithLogitsLoss()
for epoch in epoch_bar:
np.random.shuffle(train_ids)
batch_bar = trange(num_batch)
batch_sampler = balance_batch(
train_ids, train_data.loc[train_ids, "state_label"], num_batch)
for idx in batch_bar:
tap.eval()
lr_model.train()
if args.sampling == "normal":
batch_ids = train_ids[idx * batch_size: (idx + 1) * batch_size]
elif args.sampling == "resample":
batch_ids = resample(
train_ids, n_samples=batch_size, stratify=train_data["state_label"])
elif args.sampling == "balance":
batch_ids = next(batch_sampler)
labels = train_data.loc[batch_ids, "state_label"].to_numpy()
optimizer.zero_grad()
batch_embeds = embeds[batch_ids]
lr_prob = lr_model(batch_embeds)
loss = loss_fn(lr_prob, torch.tensor(labels).to(lr_prob))
loss.backward()
optimizer.step()
acc, f1, auc = eval_nodeclass(embeds, lr_model, val_eids, val_data)
batch_bar.set_postfix(loss=loss.item(), acc=acc, f1=f1, auc=auc)
acc, f1, auc = eval_nodeclass(embeds, lr_model, val_eids, val_data)
epoch_bar.update()
epoch_bar.set_postfix(loss=loss.item(), acc=acc, f1=f1, auc=auc)
def ckpt_path(
epoch): return f'./nc-ckpt/{args.dataset}-{args.lr}-{args.batch_size}-{args.sampling}-{args.pos_weight}-{epoch}-{args.hostname}-{device.type}-{device.index}.pth'
if early_stopper.early_stop_check(auc):
logger.info('No improvment over {} epochs, stop training'.format(
early_stopper.max_round))
logger.info(
f'Loading the best model at epoch {early_stopper.best_epoch}')
best_model_path = ckpt_path(early_stopper.best_epoch)
lr_model.load_state_dict(torch.load(best_model_path))
logger.info(
f'Loaded the best model at epoch {early_stopper.best_epoch} for inference')
break
else:
torch.save(lr_model.state_dict(), ckpt_path(epoch))
lr_model.eval()
_, _, val_auc = eval_nodeclass(embeds, lr_model, val_eids, val_data)
acc, f1, auc = eval_nodeclass(embeds, lr_model, test_eids, test_data)
params = {"best_epoch": early_stopper.best_epoch,
"batch_size": args.batch_size, "lr": args.lr,
"sampling": args.sampling, "pos_weight": args.pos_weight,
"neg_ratio": args.neg_ratio}
val_metrics = {"val_auc": val_auc}
metrics = {"acc": acc, "f1": f1, "auc": auc}
write_result(val_metrics, metrics, args.dataset,
params, postfix="NC-GTC", results="nc-results")
def edge_args(parser):
parser.add_argument("--norm", action="store_true")
parser.add_argument("--trainable",
dest="trainable", action="store_true")
parser.add_argument("--no-trainable",
dest="trainable", action="store_false")
parser.add_argument("--time-encoding", "-te", type=str, default="cosine",
help="Time encoding function.", choices=["concat", "cosine", "outer"])
parser.add_argument("--n-hidden", type=int, default=128,
help="number of hidden gcn units")
parser.add_argument("--n-layers", type=int, default=2,
help="number of hidden gcn layers")
parser.add_argument("--n-neg", type=int, default=1,
help="number of negative samples")
parser.add_argument("--no-ce", action="store_true")
parser.add_argument("--pos-contra", "-pc", action="store_true")
parser.add_argument("--neg-contra", '-nc', action="store_true")
parser.add_argument("--lam", type=float, default=0.0,
help="Weight for contrastive loss.")
parser.add_argument("--remain-history", "-rh",
"-hist", action="store_true")
parser.add_argument("--n-hist", type=int, default=1,
help="number of history samples")
parser.add_argument("--margin", type=float, default=0.1)
parser.add_argument("--weight-decay", type=float, default=1e-5,
help="Weight for L2 loss")
parser.add_argument("--agg-type", type=str, default="gcn",
help="Aggregator type: mean/gcn/pool")
parser.add_argument("--no-proj", dest="projection", action="store_false")
return parser
def parse_args():
import socket
# trainable, n_layers, dropout, agg_type, time_encoding, n_neg, n_hist, pos_contra, neg_contra, remain_history, lam, norm
parser = argparse.ArgumentParser(description='Temporal GraphSAGE')
parser.add_argument("-d", "--dataset", type=str, default="JODIE-wikipedia",
choices=["JODIE-wikipedia", "JODIE-reddit"])
parser.add_argument("--dropout", type=float, default=0.2,
help="dropout probability")
parser.add_argument("--log-file", action="store_true")
hostname = socket.gethostname()
parser.add_argument("--hostname", action="store_const",
const=hostname, default=hostname)
parser.add_argument("--gid", type=int, default=0,
help="Specify GPU id.")
parser.add_argument("--lr", type=float, default=1e-4,
help="learning rate")
parser.add_argument("--epochs", type=int, default=50,
help="number of training epochs")
parser.add_argument("-bs", "--batch-size", type=int, default=128)
parser.add_argument("-pw", "--pos-weight", action="store_true")
parser.add_argument("--sampling", default="balance",
choices=["normal", "resample", "balance"])
parser.add_argument("--neg-ratio", type=int, default=1)
parser.add_argument("--gcn-lr", type=float, default=0.01)
parser = edge_args(parser)
return parser
if __name__ == "__main__":
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
parser = parse_args()
args = parser.parse_args()
logger = set_logger()
main(args, logger)