-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
88 lines (76 loc) · 3.36 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import numpy as np
import pandas as pd
import torch
from torch.utils.data import DataLoader, Dataset
class TemporalDataset(Dataset):
def __init__(self,
graph,
edges,
neg_k=1,
train=True):
super(TemporalDataset, self).__init__()
device = torch.device("cpu")
self.g = graph
self.train_src = torch.tensor(
edges["from_node_id"].to_numpy()).long().to(device)
self.train_dst = torch.tensor(
edges["to_node_id"].to_numpy()).long().to(device)
self.train_t = torch.tensor(
edges["timestamp"].to_numpy()).float().to(device)
self.dst_nodes = self.train_dst.unique()
self.n_nodes = self.dst_nodes.shape[0]
self.in_edges = []
self.out_edges = []
graph_src, graph_dst = self.g.edges()
for i in graph.nodes().sort()[0]:
self.in_edges.append(graph.in_edges(i, 'eid').sort()[0])
self.out_edges.append(graph.out_edges(i, 'eid').sort()[0])
assert torch.all(graph_dst[self.in_edges[i]] == i)
assert torch.all(graph_src[self.out_edges[i]] == i)
assert torch.all(self.in_edges[i][1:] - self.in_edges[i][:-1] > 0)
assert torch.all(self.out_edges[i][1:] - self.out_edges[i][:-1] > 0)
self.neg_k = neg_k
self.train = train
def __getitem__(self, index: int) -> tuple:
g = self.g
t = g.edata["timestamp"]
isrc, idst, it = self.train_src[index], self.train_dst[
index], self.train_t[index]
# src, dst, src_edges = g.out_edges(isrc, 'all')
src_edges = self.out_edges[isrc]
# assert torch.all(src_edges[1:] - src_edges[:-1] > 0)
src_idx = (t[src_edges] < it).sum() - 1
src_idx = torch.max(src_idx, torch.zeros_like(src_idx))
src_eid = src_edges[src_idx]
# dst_edges = g.in_edges(idst, 'eid')
dst_edges = self.in_edges[idst]
# print(idst)
# print(dst_edges)
# assert torch.all(dst_edges[1:] - dst_edges[:-1] > 0)
dst_idx = (t[dst_edges] < it).sum() - 1
dst_idx = torch.max(dst_idx, torch.zeros_like(dst_idx))
dst_eid = dst_edges[dst_idx]
# print(idst, t[dst_edges])
# print(dst_idx, t[dst_eid], it)
assert torch.all(torch.logical_or(t[src_eid] < it, src_idx == 0))
assert torch.all(torch.logical_or(t[dst_eid] < it, dst_idx == 0))
assert torch.all(t[src_eid[src_idx != 0]] < it)
assert torch.all(t[dst_eid[dst_idx != 0]] < it)
if not self.train:
return it, src_eid, dst_eid
neg_ = torch.randint(self.n_nodes, size=(self.neg_k, ))
ineg = self.dst_nodes[neg_]
neg_indices = torch.zeros_like(ineg)
neg_eids = torch.zeros_like(ineg)
for i, neg in enumerate(ineg):
# neg_edges = g.in_edges(neg, 'eid')
neg_edges = self.in_edges[neg]
neg_idx = (t[neg_edges] < it).sum() - 1
neg_idx = torch.max(neg_idx, torch.zeros_like(neg_idx))
neg_indices[i] = neg_idx
neg_eids[i] = neg_edges[neg_idx]
assert torch.all(torch.logical_or(t[neg_eids] < it, neg_indices == 0))
assert torch.all(g.has_edges_between(isrc, idst) == 1)
return it, src_eid, dst_eid, neg_eids
def __len__(self) -> int:
return self.train_src.shape[0]