-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgumbel_pretrain.py
executable file
·402 lines (352 loc) · 14.7 KB
/
gumbel_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
"""Unified interface to all dynamic graph model experiments"""
import logging
import math
import os
import sys
import numpy as np
import torch
from sklearn.metrics import (accuracy_score, average_precision_score, f1_score,
roc_auc_score)
from tqdm import trange
from args_config import gumbel_args_config
from data_util import load_data, load_graph, load_label_data
from graph import NeighborFinder, make_label_data
from gumbel_alpha import GumbelGAN
from util import EarlyStopMonitor, RandEdgeSampler, set_logger
#import numba
# Argument and global variables
try:
parser = gumbel_args_config()
args = parser.parse_args()
except:
parser.print_help()
sys.exit(0)
# Arguments
if True:
BATCH_SIZE = args.bs
FREEZE = args.freeze
NUM_NEIGHBORS = args.n_degree
NUM_NEG = 1
NUM_EPOCH = args.n_epoch
NUM_HEADS = args.n_head
DROP_OUT = args.drop_out
GPU = args.gpu
UNIFORM = args.uniform
USE_TIME = args.time
AGG_METHOD = args.agg_method
ATTN_MODE = args.attn_mode
SEQ_LEN = NUM_NEIGHBORS
DATA = args.data
TASK = args.task
HARD = args.hard
NUM_LAYER = args.n_layer
LEARNING_RATE = args.lr
NODE_DIM = args.node_dim
TIME_DIM = args.time_dim
# Model initialize
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
device = torch.device('cuda:{}'.format(GPU))
import socket
DEVICE_STR = f'{socket.gethostname()}-{device.index}'
MODEL_SAVE_PATH = f'./sample_cache/{TASK}-{FREEZE}-{args.data}-gumbel-{HARD}.pth'
def get_checkpoint_path(epoch):
return f'./ckpt/{TASK}-{args.data}-gumbel-{HARD}-{epoch}.pth'
# set up logger
if True:
logger = set_logger()
logger.info(args)
def eval_one_epoch(hint, dps, src, dst, ts, label):
with torch.no_grad():
dps = dps.eval()
TEST_BATCH_SIZE = BATCH_SIZE
num_test_instance = len(src)
num_test_batch = math.ceil(len(src) / TEST_BATCH_SIZE)
scores = []
for k in range(num_test_batch):
s_idx = k * TEST_BATCH_SIZE
e_idx = min(s_idx + TEST_BATCH_SIZE, num_test_instance)
src_l_cut = src[s_idx:e_idx]
dst_l_cut = dst[s_idx:e_idx]
ts_l_cut = ts[s_idx:e_idx]
prob_score = dps.forward(src_l_cut, dst_l_cut, ts_l_cut).sigmoid()
scores.extend(list(prob_score.cpu().numpy()))
pred_label = np.array(scores) > 0.5
pred_prob = np.array(scores)
return accuracy_score(label, pred_label), average_precision_score(
label,
pred_label), f1_score(label,
pred_label), roc_auc_score(label, pred_prob)
# Load data and train val test split
if True:
logging.info("Begin dataset %s.", DATA)
if TASK == "edge":
edges, n_nodes, val_time, test_time = load_graph(DATA)
g_df = edges[["from_node_id", "to_node_id", "timestamp"]].copy()
g_df["idx"] = np.arange(1, len(g_df) + 1)
g_df.columns = ["u", "i", "ts", "idx"]
elif TASK == "node":
edges, nodes = load_data(DATA, "format")
n_nodes = len(nodes)
# padding node is 0, so add 1 here.
id2idx = {row.node_id: row.id_map + 1 for row in nodes.itertuples()}
edges["from_node_id"] = edges["from_node_id"].map(id2idx)
edges["to_node_id"] = edges["to_node_id"].map(id2idx)
g_df = edges[["from_node_id", "to_node_id", "timestamp"]].copy()
g_df["idx"] = np.arange(1, len(edges) + 1)
g_df.columns = ["u", "i", "ts", "idx"]
val_time, test_time = list(np.quantile(g_df.ts, [0.70, 0.85]))
if len(edges.columns) > 4:
e_feat = edges.iloc[:, 4:].to_numpy()
padding = np.zeros((1, e_feat.shape[1]))
e_feat = np.concatenate((padding, e_feat))
else:
e_feat = np.zeros((len(g_df) + 1, NODE_DIM))
if args.freeze:
n_feat = np.zeros((n_nodes + 1, NODE_DIM))
else:
bound = np.sqrt(6 / (2 * NODE_DIM))
n_feat = np.random.uniform(-bound, bound, (n_nodes + 1, NODE_DIM))
src_l = g_df.u.values
dst_l = g_df.i.values
e_idx_l = g_df.idx.values
ts_l = g_df.ts.values
max_src_index = src_l.max()
max_idx = max(src_l.max(), dst_l.max())
# set train, validation, test datasets
if True:
valid_train_flag = (ts_l < val_time)
train_src_l = src_l[valid_train_flag]
train_dst_l = dst_l[valid_train_flag]
train_ts_l = ts_l[valid_train_flag]
train_e_idx_l = e_idx_l[valid_train_flag]
train_rand_sampler = RandEdgeSampler(train_src_l, train_dst_l)
val_rand_sampler = RandEdgeSampler(src_l, dst_l)
test_rand_sampler = RandEdgeSampler(src_l, dst_l)
# set validation, test datasets
if True:
if TASK == "edge":
_, val_data, test_data = load_label_data(dataset=DATA)
val_src_l = val_data.u.values
val_dst_l = val_data.i.values
val_ts_l = val_data.ts.values
val_label_l = val_data.label.values
test_src_l = test_data.u.values
test_dst_l = test_data.i.values
test_ts_l = test_data.ts.values
test_label_l = test_data.label.values
elif TASK == "node":
# select validation and test dataset
valid_val_flag = (ts_l <= test_time) * (ts_l > val_time)
valid_test_flag = ts_l > test_time
val_src_l, val_dst_l, val_ts_l, val_label_l = make_label_data(
src_l, dst_l, ts_l, valid_val_flag, test_rand_sampler)
test_src_l, test_dst_l, test_ts_l, test_label_l = make_label_data(
src_l, dst_l, ts_l, valid_test_flag, test_rand_sampler)
else:
raise NotImplementedError(TASK)
# Initialize the data structure for graph and edge sampling
# build the graph for fast query
adj_list = [[] for _ in range(max_idx + 1)]
for src, dst, eidx, ts in zip(train_src_l, train_dst_l, train_e_idx_l,
train_ts_l):
adj_list[src].append((dst, eidx, ts))
adj_list[dst].append((src, eidx, ts))
train_ngh_finder = NeighborFinder(adj_list, uniform=True)
# full graph with all the data for the test and validation purpose
full_adj_list = [[] for _ in range(max_idx + 1)]
for src, dst, eidx, ts in zip(src_l, dst_l, e_idx_l, ts_l):
full_adj_list[src].append((dst, eidx, ts))
full_adj_list[dst].append((src, eidx, ts))
full_ngh_finder = NeighborFinder(full_adj_list, uniform=True)
dps = GumbelGAN(train_ngh_finder,
n_feat,
e_feat,
n_feat_freeze=args.freeze,
num_layers=NUM_LAYER,
use_time=USE_TIME,
agg_method=AGG_METHOD,
attn_mode=ATTN_MODE,
seq_len=SEQ_LEN,
n_head=NUM_HEADS,
drop_out=DROP_OUT,
node_dim=NODE_DIM,
time_dim=TIME_DIM,
hard=HARD,
num_neighbors=NUM_NEIGHBORS)
optimizer = torch.optim.Adam(dps.parameters(), lr=LEARNING_RATE)
criterion = torch.nn.BCELoss()
dps = dps.to(device)
num_instance = len(train_src_l)
num_batch = math.ceil(num_instance / BATCH_SIZE)
logger.info('num of training instances: {}'.format(num_instance))
logger.info('num of batches per epoch: {}'.format(num_batch))
idx_list = np.arange(num_instance)
np.random.shuffle(idx_list)
# Pretraining a 1-layer GumbelGAN with uniform sampling.
if True:
logger.info("Pretraining a 1-layer GumberlGAN with uniform sampling.")
early_stopper = EarlyStopMonitor()
epoch_bar = trange(NUM_EPOCH)
for epoch in epoch_bar:
# Training
# training use only training graph
dps.ngh_finder = train_ngh_finder
np.random.shuffle(idx_list)
batch_bar = trange(num_batch)
for k in batch_bar:
s_idx = k * BATCH_SIZE
e_idx = min(num_instance - 1, s_idx + BATCH_SIZE)
src_l_cut = train_src_l[s_idx:e_idx]
dst_l_cut = train_dst_l[s_idx:e_idx]
ts_l_cut = train_ts_l[s_idx:e_idx]
size = len(src_l_cut)
src_l_fake, dst_l_fake = train_rand_sampler.sample(size)
with torch.no_grad():
pos_label = torch.ones(size, dtype=torch.float, device=device)
neg_label = torch.zeros(size, dtype=torch.float, device=device)
optimizer.zero_grad()
dps = dps.train()
pos_prob, neg_prob = dps.contrast(src_l_cut,
dst_l_cut,
dst_l_fake,
ts_l_cut,
NUM_NEIGHBORS,
gumbel=False)
loss = criterion(pos_prob, pos_label)
loss += criterion(neg_prob, neg_label)
loss.backward()
optimizer.step()
# get training results
with torch.no_grad():
dps = dps.eval()
pred_score = np.concatenate([(pos_prob).cpu().detach().numpy(),
(neg_prob).cpu().detach().numpy()
])
pred_label = pred_score > 0.5
true_label = np.concatenate([np.ones(size), np.zeros(size)])
acc = accuracy_score(true_label, pred_label)
ap = average_precision_score(true_label, pred_label)
f1 = f1_score(true_label, pred_label)
auc = roc_auc_score(true_label, pred_score)
batch_bar.set_postfix(loss=loss.item(),
acc=acc,
f1=f1,
auc=auc)
# validation phase use all information
dps.ngh_finder = full_ngh_finder
val_acc, val_ap, val_f1, val_auc = eval_one_epoch(
'val for old nodes', dps, val_src_l, val_dst_l, val_ts_l,
val_label_l)
epoch_bar.update()
epoch_bar.set_postfix(acc=val_acc, f1=val_f1, auc=val_auc)
if early_stopper.early_stop_check(val_auc):
break
else:
torch.save(dps.state_dict(), get_checkpoint_path(epoch))
logger.info('No improvment over {} epochs, stop training'.format(
early_stopper.max_round))
logger.info(f'Loading the best model at epoch {early_stopper.best_epoch}')
best_model_path = get_checkpoint_path(early_stopper.best_epoch)
dps.load_state_dict(torch.load(best_model_path))
logger.info(
f'Loaded the best model at epoch {early_stopper.best_epoch} for inference'
)
# If only use attention model, we sample the top-k neighbors w.r.t to
# attention scores.
if HARD == "atte":
logger.info('Saving DPS model')
torch.save(dps.state_dict(), MODEL_SAVE_PATH)
logger.info('DPS models saved')
exit(0)
# Finetune the GumbelGAN model.
if True:
logger.info("Finetune the GumbelGAN model.")
TEMP = args.temp
TEMP_MIN = 0.5
ANNEAL_RATE = args.anneal
optimizer = torch.optim.Adam(dps.parameters(),
lr=LEARNING_RATE / BATCH_SIZE)
early_stopper = EarlyStopMonitor()
# epoch_bar = trange(NUM_EPOCH)
epoch_bar = trange(1)
for epoch in epoch_bar:
# Training
# training use only training graph
dps.ngh_finder = train_ngh_finder
np.random.shuffle(idx_list)
batch_bar = trange(num_batch)
temp = TEMP
for k in batch_bar:
s_idx = k * BATCH_SIZE
e_idx = min(num_instance - 1, s_idx + BATCH_SIZE)
src_l_cut = train_src_l[s_idx:e_idx]
dst_l_cut = train_dst_l[s_idx:e_idx]
ts_l_cut = train_ts_l[s_idx:e_idx]
size = len(src_l_cut)
src_l_fake, dst_l_fake = train_rand_sampler.sample(size)
with torch.no_grad():
pos_label = torch.ones((1, ), dtype=torch.float, device=device)
neg_label = torch.zeros((1, ),
dtype=torch.float,
device=device)
optimizer.zero_grad()
dps = dps.train()
src_l_cut = src_l_cut[:, np.newaxis]
dst_l_cut = dst_l_cut[:, np.newaxis]
dst_l_fake = dst_l_fake[:, np.newaxis]
ts_l_cut = ts_l_cut[:, np.newaxis]
pos_prob = []
neg_prob = []
for src, dst, fake, ts in zip(src_l_cut, dst_l_cut, dst_l_fake,
ts_l_cut):
pos, neg = dps.contrast(src,
dst,
fake,
ts,
NUM_NEIGHBORS,
gumbel=True)
loss = criterion(pos, pos_label)
loss += criterion(neg, neg_label)
pos_prob.append(pos.cpu().detach().item())
neg_prob.append(neg.cpu().detach().item())
loss.backward()
optimizer.step()
if k % 10 == 1:
temp = np.maximum(temp * np.exp(-ANNEAL_RATE * k), TEMP_MIN)
dps.anneal_temp(temp)
# get training results
with torch.no_grad():
dps = dps.eval()
pred_score = np.concatenate([pos_prob, neg_prob])
pred_label = pred_score > 0.5
true_label = np.concatenate([np.ones(size), np.zeros(size)])
acc = accuracy_score(true_label, pred_label)
ap = average_precision_score(true_label, pred_label)
f1 = f1_score(true_label, pred_label)
auc = roc_auc_score(true_label, pred_score)
batch_bar.set_postfix(loss=loss.item(),
acc=acc,
f1=f1,
auc=auc)
# validation phase use all information
dps.ngh_finder = full_ngh_finder
val_acc, val_ap, val_f1, val_auc = eval_one_epoch(
'val for old nodes', dps, val_src_l, val_dst_l, val_ts_l,
val_label_l)
epoch_bar.update()
epoch_bar.set_postfix(acc=val_acc, f1=val_f1, auc=val_auc)
if early_stopper.early_stop_check(val_auc):
break
else:
torch.save(dps.state_dict(), get_checkpoint_path(epoch))
logger.info('No improvment over {} epochs, stop training'.format(
early_stopper.max_round))
logger.info(f'Loading the best model at epoch {early_stopper.best_epoch}')
best_model_path = get_checkpoint_path(early_stopper.best_epoch)
dps.load_state_dict(torch.load(best_model_path))
logger.info(
f'Loaded the best model at epoch {early_stopper.best_epoch} for inference'
)
logger.info('Saving DPS model')
torch.save(dps.state_dict(), MODEL_SAVE_PATH)
logger.info('DPS models saved')