-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgraph.py
326 lines (270 loc) · 12 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import logging
import numpy as np
from numba import jit
def make_label_data(src_l, dst_l, ts_l, val_flag, rand_sampler):
num = np.sum(val_flag)
val_src = src_l[val_flag]
val_dst = dst_l[val_flag]
val_ts = ts_l[val_flag]
val_src_l = np.hstack([val_src, val_src])
_, dst_fake = rand_sampler.sample(num)
val_dst_l = np.hstack([val_dst, dst_fake])
val_ts_l = np.hstack([val_ts, val_ts])
val_label_l = np.hstack([np.ones(num), np.zeros(num)])
return val_src_l, val_dst_l, val_ts_l, val_label_l
# @jit
def find_before_nb(src_idx, cut_time, off_set_l, node_idx_l, node_ts_l,
edge_idx_l):
neighbors_idx = node_idx_l[off_set_l[src_idx]:off_set_l[src_idx + 1]]
neighbors_ts = node_ts_l[off_set_l[src_idx]:off_set_l[src_idx + 1]]
neighbors_e_idx = edge_idx_l[off_set_l[src_idx]:off_set_l[src_idx + 1]]
if len(neighbors_idx) == 0 or len(neighbors_ts) == 0:
return neighbors_idx, neighbors_ts, neighbors_e_idx
right = np.searchsorted(neighbors_ts, cut_time, side="left")
return neighbors_idx[:right], neighbors_e_idx[:right], neighbors_ts[:right]
# @jit
def get_temporal_neighbor_nb(src_idx_l,
cut_time_l,
num_neighbors,
off_set_l,
node_idx_l,
node_ts_l,
edge_idx_l,
uniform=True):
assert (len(src_idx_l) == len(cut_time_l))
out_ngh_node_batch = np.zeros(
(len(src_idx_l), num_neighbors)).astype(np.int32)
out_ngh_t_batch = np.zeros(
(len(src_idx_l), num_neighbors)).astype(np.float32)
out_ngh_eidx_batch = np.zeros(
(len(src_idx_l), num_neighbors)).astype(np.int32)
for i, (src_idx, cut_time) in enumerate(zip(src_idx_l, cut_time_l)):
ngh_idx, ngh_eidx, ngh_ts = find_before_nb(src_idx, cut_time,
off_set_l, node_idx_l,
node_ts_l, edge_idx_l)
if len(ngh_idx) > 0:
if uniform:
sampled_idx = np.random.randint(0, len(ngh_idx), num_neighbors)
out_ngh_node_batch[i, :] = ngh_idx[sampled_idx]
out_ngh_t_batch[i, :] = ngh_ts[sampled_idx]
out_ngh_eidx_batch[i, :] = ngh_eidx[sampled_idx]
# resort based on time
pos = out_ngh_t_batch[i, :].argsort()
out_ngh_node_batch[i, :] = out_ngh_node_batch[i, :][pos]
out_ngh_t_batch[i, :] = out_ngh_t_batch[i, :][pos]
out_ngh_eidx_batch[i, :] = out_ngh_eidx_batch[i, :][pos]
else:
ngh_ts = ngh_ts[-num_neighbors:]
ngh_idx = ngh_idx[-num_neighbors:]
ngh_eidx = ngh_eidx[-num_neighbors:]
assert (len(ngh_idx) <= num_neighbors)
assert (len(ngh_ts) <= num_neighbors)
assert (len(ngh_eidx) <= num_neighbors)
out_ngh_node_batch[i, num_neighbors - len(ngh_idx):] = ngh_idx
out_ngh_t_batch[i, num_neighbors - len(ngh_ts):] = ngh_ts
out_ngh_eidx_batch[i,
num_neighbors - len(ngh_eidx):] = ngh_eidx
return out_ngh_node_batch, out_ngh_eidx_batch, out_ngh_t_batch
class NeighborFinder:
PRECISION = 5
def __init__(self, adj_list, uniform=False, exp=False, alpha=1.0):
"""
Params
------
node_idx_l: List[int]
node_ts_l: List[int]
off_set_l: List[int], such that node_idx_l[off_set_l[i]:off_set_l[i + 1]] = adjacent_list[i]
"""
node_idx_l, node_ts_l, edge_idx_l, off_set_l = self.init_off_set(
adj_list)
self.node_idx_l = node_idx_l
self.node_ts_l = node_ts_l
dt = node_ts_l.max() - node_ts_l.min()
self.norm_ts_l = (node_ts_l - node_ts_l.min()) / dt
self.edge_idx_l = edge_idx_l
self.off_set_l = off_set_l
# Backward capability.
assert not (uniform and exp)
self.uniform = uniform
if uniform:
self.sampling = "uniform"
elif exp:
self.sampling = "exp"
else:
self.sampling = "temporal"
if type(alpha) is float:
self.alpha = np.full_like(off_set_l, alpha)
elif type(alpha) is not np.ndarray:
self.alpha = np.zeros_like(off_set_l)
else:
self.alpha = alpha
self.cache = {}
numba_logger = logging.getLogger("numba")
numba_logger.setLevel(logging.WARNING)
def init_off_set(self, adj_list):
"""
Params
------
adj_list: List[List[int]]
"""
n_idx_l = []
n_ts_l = []
e_idx_l = []
off_set_l = [0]
for i in range(len(adj_list)):
curr = adj_list[i]
curr = sorted(curr, key=lambda x: x[1])
n_idx_l.extend([x[0] for x in curr])
e_idx_l.extend([x[1] for x in curr])
n_ts_l.extend([x[2] for x in curr])
off_set_l.append(len(n_idx_l))
n_idx_l = np.array(n_idx_l)
n_ts_l = np.array(n_ts_l)
e_idx_l = np.array(e_idx_l)
off_set_l = np.array(off_set_l)
assert len(n_idx_l) == len(n_ts_l)
assert off_set_l[-1] == len(n_ts_l)
return n_idx_l, n_ts_l, e_idx_l, off_set_l
def find_before(self, src_idx, cut_time, norm=False):
"""
Params
------
src_idx: int
cut_time: float
"""
node_idx_l = self.node_idx_l
node_ts_l = self.node_ts_l
norm_ts_l = self.norm_ts_l
edge_idx_l = self.edge_idx_l
off_set_l = self.off_set_l
neighbors_idx = node_idx_l[off_set_l[src_idx]:off_set_l[src_idx + 1]]
neighbors_ts = node_ts_l[off_set_l[src_idx]:off_set_l[src_idx + 1]]
neighbors_norm_ts = norm_ts_l[off_set_l[src_idx]:off_set_l[src_idx +
1]]
neighbors_e_idx = edge_idx_l[off_set_l[src_idx]:off_set_l[src_idx + 1]]
if len(neighbors_idx) == 0 or len(neighbors_ts) == 0:
if norm:
return neighbors_idx, neighbors_e_idx, neighbors_ts, neighbors_norm_ts
else:
return neighbors_idx, neighbors_e_idx, neighbors_ts
right = np.searchsorted(neighbors_ts, cut_time, side="left")
ngh_idx = neighbors_idx[:right]
ngh_eidx = neighbors_e_idx[:right]
ngh_ts = neighbors_ts[:right]
norm_ts = neighbors_norm_ts[:right]
if norm:
return ngh_idx, ngh_eidx, ngh_ts, norm_ts
else:
return ngh_idx, ngh_eidx, ngh_ts
def find_before_idx(self, src_idx, cut_time, norm=False):
node_ts_l = self.node_ts_l
off_set_l = self.off_set_l
neighbors_ts = node_ts_l[off_set_l[src_idx]:off_set_l[src_idx + 1]]
if len(neighbors_ts) == 0 or len(neighbors_ts) == 0:
return 0
right = np.searchsorted(neighbors_ts, cut_time, side="left")
return right
def get_temporal_neighbor(self, src_idx_l, cut_time_l, num_neighbors=20):
"""
Params
------
src_idx_l: List[int]
cut_time_l: List[float],
num_neighbors: int
"""
assert len(src_idx_l) == len(cut_time_l)
if self.sampling == "exp":
return self.exp_sampling(src_idx_l, cut_time_l, num_neighbors)
node_idx_l = self.node_idx_l
node_ts_l = self.node_ts_l
edge_idx_l = self.edge_idx_l
off_set_l = self.off_set_l
return get_temporal_neighbor_nb(src_idx_l, cut_time_l, num_neighbors,
off_set_l, node_idx_l, node_ts_l,
edge_idx_l, self.uniform)
def exp_sampling(self, src_idx_l, cut_time_l, num_neighbors=20):
out_ngh_node_batch = np.zeros(
(len(src_idx_l), num_neighbors)).astype(np.int32)
out_ngh_t_batch = np.zeros(
(len(src_idx_l), num_neighbors)).astype(np.float32)
out_ngh_eidx_batch = np.zeros(
(len(src_idx_l), num_neighbors)).astype(np.int32)
for i, (src_idx, cut_time) in enumerate(zip(src_idx_l, cut_time_l)):
right = self.find_before_idx(src_idx, cut_time)
result = self.check_cache(src_idx, right)
if result is not None:
out_ngh_node_batch[i] = result[0]
out_ngh_t_batch[i] = result[1]
out_ngh_eidx_batch[i] = result[2]
continue
ngh_idx, ngh_eidx, ngh_ts, norm_ts = self.find_before(src_idx,
cut_time,
norm=True)
if len(ngh_idx) <= 0:
continue
if len(ngh_idx) < num_neighbors:
right = len(ngh_idx)
out_ngh_node_batch[i, :right] = ngh_idx
out_ngh_t_batch[i, :right] = ngh_ts
out_ngh_eidx_batch[i, :right] = ngh_eidx
continue
ngh_dt = norm_ts - np.max(norm_ts)
ngh_logit = np.exp(self.alpha[src_idx] * ngh_dt)
prob = ngh_logit / np.sum(ngh_logit)
nonzero_num = (prob > 0).sum()
num = min(num_neighbors, nonzero_num)
sampled_idx = np.random.choice(len(ngh_ts),
size=num,
replace=False,
p=prob)
sampled_idx = np.sort(sampled_idx)
out_ngh_node_batch[i, :num] = ngh_idx[sampled_idx]
out_ngh_t_batch[i, :num] = ngh_ts[sampled_idx]
out_ngh_eidx_batch[i, :num] = ngh_eidx[sampled_idx]
# resort based on time
pos = out_ngh_t_batch[i, :].argsort()
out_ngh_node_batch[i, :] = out_ngh_node_batch[i, :][pos]
out_ngh_t_batch[i, :] = out_ngh_t_batch[i, :][pos]
out_ngh_eidx_batch[i, :] = out_ngh_eidx_batch[i, :][pos]
result = (out_ngh_node_batch[i], out_ngh_t_batch[i],
out_ngh_eidx_batch[i])
self.update_cache(src_idx, right, result)
return out_ngh_node_batch, out_ngh_eidx_batch, out_ngh_t_batch
def find_k_hop(self, k, src_idx_l, cut_time_l, num_neighbors=20):
"""Sampling the k-hop sub graph"""
x, y, z = self.get_temporal_neighbor(src_idx_l, cut_time_l,
num_neighbors)
node_records = [x]
eidx_records = [y]
t_records = [z]
for _ in range(k - 1):
ngn_node_est, ngh_t_est = (
node_records[-1],
t_records[-1],
) # [N, *([num_neighbors] * (k - 1))]
orig_shape = ngn_node_est.shape
ngn_node_est = ngn_node_est.flatten()
ngn_t_est = ngh_t_est.flatten()
(
out_ngh_node_batch,
out_ngh_eidx_batch,
out_ngh_t_batch,
) = self.get_temporal_neighbor(ngn_node_est, ngn_t_est,
num_neighbors)
out_ngh_node_batch = out_ngh_node_batch.reshape(
*orig_shape, num_neighbors) # [N, *([num_neighbors] * k)]
out_ngh_eidx_batch = out_ngh_eidx_batch.reshape(
*orig_shape, num_neighbors)
out_ngh_t_batch = out_ngh_t_batch.reshape(*orig_shape,
num_neighbors)
node_records.append(out_ngh_node_batch)
eidx_records.append(out_ngh_eidx_batch)
t_records.append(out_ngh_t_batch)
return node_records, eidx_records, t_records
def update_cache(self, node, idx, results):
key = (node, idx)
if key not in self.cache:
self.cache[key] = results
def check_cache(self, node, idx):
key = (node, idx)
return self.cache.get(key)