-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfusion.py
executable file
·186 lines (162 loc) · 8.19 KB
/
fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from module import TGAN, AttnModel, LSTMPool, MeanPool
# Reference: KDD 2020 AM-GCN: Adaptive Multi-channel Graph Convolutional Networks
class SoftmaxAttention(nn.Module):
def __init__(self, feat_dim: int, samplers: int) -> None:
super(SoftmaxAttention, self).__init__()
self.trans = nn.ModuleList(
[nn.Linear(feat_dim, feat_dim) for _ in range(samplers)])
self.k_samplers = samplers
self.query = nn.Linear(feat_dim, 1, bias=False)
self.layer_norm = nn.LayerNorm(feat_dim)
def forward(self, embeds: list) -> torch.Tensor:
k = len(embeds)
assert len(embeds[0].shape) == 2
x = [torch.tanh(self.trans[i](embeds[i])) for i in range(k)]
x = [self.query(x[i]) for i in range(k)] # (k, n, 1)
weights = torch.softmax(torch.cat(x, dim=1), dim=1) # (n, k)
embeds = torch.cat([i.unsqueeze(dim=1) for i in embeds],
dim=1) # (n, k, d)
ans = weights.unsqueeze(-1) * embeds # (n, k, d)
ans = self.layer_norm(ans.sum(dim=1))
return ans, weights # (n, d)
class SamplingFusion(TGAN):
def __init__(self, *args, **kwargs) -> None:
# [Time Decay Sampling, Gumbel Attention Sampling]
self.k_samplers = kwargs.pop("k_samplers")
self.num_layers = kwargs['num_layers']
# For each layer, we employ k attention models and a fusion layer.
super(SamplingFusion, self).__init__(*args, **kwargs)
delattr(self, "attn_model_list")
agg_method = kwargs["agg_method"]
attn_mode = kwargs["attn_mode"]
n_head = kwargs["n_head"]
drop_out = kwargs["drop_out"]
self.attn_model_list = nn.ModuleList([
self.create_attn_model(agg_method, attn_mode, n_head, drop_out)
for _ in range(self.k_samplers)
])
feat_dim = self.feat_dim
self.fusion_layer_list = torch.nn.ModuleList([
SoftmaxAttention(feat_dim, self.k_samplers)
for _ in range(self.num_layers)
])
def create_attn_model(self, agg_method, attn_mode, n_head, drop_out):
# For each layer, we employ k attention models and a fusion layer.
n_feat_dim = self.n_feat_dim
e_feat_dim = self.e_feat_dim
time_dim = self.time_dim
num_layers = self.num_layers
if agg_method == 'attn':
# self.logger.info('Aggregation uses attention model')
attn_model_list = nn.ModuleList([
AttnModel(n_feat_dim,
e_feat_dim,
time_dim,
attn_mode=attn_mode,
n_head=n_head,
drop_out=drop_out) for _ in range(num_layers)
])
elif agg_method == 'lstm':
# self.logger.info('Aggregation uses LSTM model')
attn_model_list = nn.ModuleList([
LSTMPool(n_feat_dim, e_feat_dim, time_dim)
for _ in range(num_layers)
])
elif agg_method == 'mean':
# self.logger.info('Aggregation uses constant mean model')
attn_model_list = nn.ModuleList(
[MeanPool(n_feat_dim, e_feat_dim) for _ in range(num_layers)])
else:
raise ValueError('invalid agg_method value, use attn or lstm')
return attn_model_list
def forward(self, src_idx_l, target_idx_l, cut_time_l, num_neighbors=20):
src_embed, _ = self.tem_conv(src_idx_l, cut_time_l, self.num_layers,
num_neighbors)
target_embed, _ = self.tem_conv(target_idx_l, cut_time_l,
self.num_layers, num_neighbors)
score = self.affinity_score(src_embed, target_embed).squeeze(dim=-1)
return score
# src_l_cut, dst_l_cut, dst_l_fake,ts_l_cut, NUM_NEIGHBORS
def contrast(self, src_idx_l, target_idx_l, background_idx_l, cut_time_l,
num_neighbors):
src_embed, _ = self.tem_conv(src_idx_l, cut_time_l, self.num_layers,
num_neighbors)
target_embed, _ = self.tem_conv(target_idx_l, cut_time_l,
self.num_layers, num_neighbors)
background_embed, _ = self.tem_conv(background_idx_l, cut_time_l,
self.num_layers, num_neighbors)
pos_score = self.affinity_score(src_embed,
target_embed).squeeze(dim=-1)
neg_score = self.affinity_score(src_embed,
background_embed).squeeze(dim=-1)
return pos_score.sigmoid(), neg_score.sigmoid()
def tem_conv(self,
src_idx_l,
cut_time_l,
curr_layers,
num_neighbors=20) -> torch.Tensor:
"""Here we precomputed the k-hop neighbors instead of computing during attention models.
"""
assert (curr_layers >= 0)
assert num_neighbors % self.k_samplers == 0
device = self.n_feat_th.device
batch_size = len(src_idx_l)
src_node_batch_th = torch.from_numpy(src_idx_l).long().to(device)
cut_time_l_th = torch.from_numpy(cut_time_l).float().to(device)
cut_time_l_th = torch.unsqueeze(cut_time_l_th, dim=1)
# query node always has the start time -> time span == 0
src_node_t_embed = self.time_encoder(torch.zeros_like(cut_time_l_th))
src_node_feat = self.node_raw_embed(src_node_batch_th)
if curr_layers == 0:
return src_node_feat, torch.full((batch_size, 2), 0.5).to(device)
# get node features at previous layer
src_node_conv_feat, _ = self.tem_conv(src_idx_l,
cut_time_l,
curr_layers=curr_layers - 1,
num_neighbors=num_neighbors)
ngh_batch = self.ngh_finder.get_temporal_neighbor(
src_idx_l, cut_time_l, num_neighbors=num_neighbors)
# next layer also perform sampling fusion
sampling_feats = []
for k, (src_ngh_node_batch, src_ngh_eidx_batch,
src_ngh_t_batch) in enumerate(ngh_batch):
# Specified attention model for the k-th sampler
half_neighbors = num_neighbors // self.k_samplers
attn_model_k = self.attn_model_list[k]
attn_m = attn_model_k[curr_layers - 1]
src_ngh_node_batch_th = torch.from_numpy(
src_ngh_node_batch).long().to(device)
src_ngh_eidx_batch = torch.from_numpy(
src_ngh_eidx_batch).long().to(device)
src_ngh_t_batch_delta = cut_time_l[:, np.newaxis] - src_ngh_t_batch
src_ngh_t_batch_th = torch.from_numpy(
src_ngh_t_batch_delta).float().to(device)
# get previous layer's node features
src_ngh_node_batch_flat = src_ngh_node_batch.flatten(
) #reshape(batch_size, -1)
src_ngh_t_batch_flat = src_ngh_t_batch.flatten(
) #reshape(batch_size, -1)
src_ngh_node_conv_feat, _ = self.tem_conv(
src_ngh_node_batch_flat,
src_ngh_t_batch_flat,
curr_layers=curr_layers - 1,
num_neighbors=num_neighbors)
src_ngh_feat = src_ngh_node_conv_feat.view(batch_size,
half_neighbors, -1)
# get edge time features and node features
src_ngh_t_embed = self.time_encoder(src_ngh_t_batch_th)
src_ngn_edge_feat = self.edge_raw_embed(src_ngh_eidx_batch)
# attention aggregation
mask = src_ngh_node_batch_th == 0
local, weight = attn_m(src_node_conv_feat, src_node_t_embed,
src_ngh_feat, src_ngh_t_embed,
src_ngn_edge_feat, mask)
sampling_feats.append(local)
# fuse feats under different sampling strategies
fusion_layer = self.fusion_layer_list[curr_layers - 1]
fusion_feats, score = fusion_layer(sampling_feats)
return fusion_feats, score