-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_data.py
97 lines (84 loc) · 3.17 KB
/
test_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import unittest
import os
from mock import patch
import pandas as pd
from codetemplate.src.data_processing import load_data, preprocess_dataset
class DatasetTestCase(unittest.TestCase):
def setUp(self) -> None:
filename = \
'../../../../data/CustomerData_LeadGenerator.csv'
self.dataframe = load_data(filename)
self.target_var = 'b_gekauft_gesamt'
@patch('os.path.isfile')
@patch('pandas.read_csv')
def test_load_data_calls_read_csv_if_exists(self, mock_isfile, mock_read_csv):
"""
Test for checking the invocation of the load method which calls read_csv().
"""
# arrange
# always return true for isfile
os.path.isfile.return_value = True
filename = \
'/data/CustomerData_LeadGenerator.csv'
# act
_ = load_data(filename)
# =================================
# TEST SUITE
# =================================
# check that read_csv is called with the correct parameters
pd.read_csv.assert_called_once_with(filename)
def test_if_no_nan_values_exists(self):
"""
Check if no NAN values are present in the dataset.
"""
# =================================
# TEST SUITE
# =================================
df = self.dataframe
assert df.isna().sum().any() < 1
def test_if_no_null_values_exists(self):
"""
Check whether null values are not present in the dataset.
"""
# =================================
# TEST SUITE
# =================================
df = self.dataframe
assert df.isnull().sum().any() < 1
def test_if_duplicates_exists(self):
"""
Check whether duplicates present in the dataset or not.
"""
# =================================
# TEST SUITE
# =================================
assert len(self.dataframe['fakeID'].unique()) == self.dataframe.shape[0]
assert self.dataframe.groupby(['fakeID', 'b_gekauft_gesamt']).size().max() == 1
def test_if_data_exits_for_all_id(self):
"""
Check if all data fields are present or not in the dataset.
"""
# =================================
# TEST SUITE
# =================================
assert self.dataframe['fakeID'].unique().shape[0] == len(self.dataframe['fakeID'])
def test_if_target_has_binary_data(self):
"""
Check whether the target classification is binary or not.
"""
# =================================
# TEST SUITE
# =================================
assert self.dataframe[self.target_var].nunique() == 2
def test_if_train_and_test_matrix_have_same_dimension(self):
"""
Check whether the existing training and testing matrices
have the same dimension or not.
"""
# =================================
# TEST SUITE
# =================================
X_train, _, X_test, _ = preprocess_dataset(self.dataframe)
assert X_train.shape[1] == X_test.shape[1]
if __name__ == '__main__':
unittest.main()