-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathsimulation.py
381 lines (305 loc) · 12.8 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
"""
Description of module...
"""
import math
import models
import navigation as nav
from networkx.exception import NetworkXNoPath
import numpy as np
import pandas as pd
import random
# fill the initial state with N cars
speed_limit = 1500
stop_distance = 20
free_distance = 60
default_acceleration = 4
# TODO: profile
def update_cars(cars, graph, dt):
"""
This function shortens the stored path of a car after determining if the car crossed the next node in the path
Then calculates the direction and magnitude of the velocity
:param: cars: dataframe
:param: graph: OGraph object from osm_request
:param: dt: double
:return: list: four Series's suitable for the main dataframe
"""
new_route = []
new_xpaths = []
new_ypaths = []
new_vx = []
new_vy = []
new_times = []
for i, car in enumerate(cars.iterrows()):
xpath, ypath = np.array(car[1]['xpath']), np.array(car[1]['ypath'])
if xpath.any() and ypath.any():
# add to route timer
new_times.append(car[1]['route-time'] + dt)
# initialize an obstacle scan of the frontal view
frontview = nav.FrontView(car[1], graph, stop_distance=stop_distance)
# determine if the car has just crossed a node
if frontview.crossed_node_event():
new_xpaths.append(car[1]['xpath'][1:])
new_ypaths.append(car[1]['ypath'][1:])
else:
new_xpaths.append(car[1]['xpath'])
new_ypaths.append(car[1]['ypath'])
next_node = np.array(frontview.upcoming_node_position())
position = np.array(frontview.position)
velocity_direction = models.unit_vector(next_node - position)
velocity = velocity_direction * speed_limit * update_speed_factor(car[1])
# if the car has stalled and accelerate() returns True, then give it a push
if np.isclose(0, velocity, atol=0.1).all() and accelerate(car[1]):
velocity += default_acceleration
new_vx.append(velocity[0])
new_vy.append(velocity[1])
else:
# set empty paths
new_xpaths.append([])
new_ypaths.append([])
# set null velocity
new_vx.append(0)
new_vy.append(0)
# save final route time
new_times.append(car[1]['route-time'])
package = [pd.Series(new_route, dtype='float'), pd.Series(new_xpaths, dtype='object'),
pd.Series(new_ypaths, dtype='object'), pd.Series(new_vx, dtype='float'),
pd.Series(new_vy, dtype='float'), pd.Series(new_times, dtype='float')]
return package
def accelerate(car):
"""
determines if there is a car ahead or a red light. Returns True if the car should accelerate, False if not.
:param car: Series
:return bool:
"""
if not car['distance-to-red-light']:
if not car['distance-to-car'] or car['distance-to-car'] > stop_distance:
return True
else:
return False
else:
return False
def update_speed_factor(car):
"""
handles logic for updating speed according to road curvature and car obstacles
:param car: Series
:return: final_factor: double
"""
frontview = nav.FrontView(car, stop_distance)
angles = frontview.angles
distance_to_node = car['distance-to-node']
distance_to_car = car['distance-to-car']
distance_to_red_light = car['distance-to-red-light']
curvature_factor = road_curvature_factor(car, angles, distance_to_node)
if distance_to_car and distance_to_red_light:
if distance_to_car <= distance_to_red_light:
final_factor = obstacle_factor(distance_to_car)
else:
final_factor = obstacle_factor(distance_to_red_light)
else:
if distance_to_car and not distance_to_red_light:
car_factor = obstacle_factor(distance_to_car)
if distance_to_car > distance_to_node:
final_factor = models.weigh_factors(
car_factor, curvature_factor, distance_to_car, distance_to_node, free_distance
)
else:
final_factor = car_factor
else:
if distance_to_red_light:
final_factor = obstacle_factor(distance_to_red_light)
else:
final_factor = curvature_factor
return abs(final_factor)
def road_curvature_factor(car, angle, d):
"""
calculates the speed factor (between 0 and 1) for road curvature
Parameters
__________
:param car: Series
:param angle: double: angles of road curvature ahead
:param d: double: distance from car to next node
Returns
_______
:return speed_factor: double: factor by which to diminish speed
"""
xpath = np.array(car['xpath'])
if xpath.size == 1:
# if it's the end of the path, treat the last node like a hard-stop intersection
theta = math.pi / 2
else:
theta = angle
if np.isclose(theta, 0, rtol=1.0e-1):
curvature_factor = 1
else:
if (stop_distance < d) and (d <= free_distance):
curvature_factor = math.log(d / (stop_distance * 2 * theta / math.pi)) / \
math.log(free_distance / (stop_distance * 2 * theta / math.pi))
else:
curvature_factor = 1
return curvature_factor
def obstacle_factor(d):
"""
calculates the speed factor (between 0 and 1) for road curvature
Parameters
_________
:param d: double: distance to car in front_view
Returns
_______
:return obstacle_factor: double: factor by which to diminish speed
"""
if (stop_distance < d) and (d <= free_distance):
factor = math.log(d / stop_distance) / math.log(free_distance / stop_distance)
else:
if d <= stop_distance:
factor = 0
else:
factor = 1
return factor
def init_random_node_start_location(n, graph, car_id=None, alternate_route=None):
"""
initializes n cars at n random nodes and sets their destinations as a culdesac
:param n: int
:param graph: object: OGraph object from osm_request
:param car_id: None or int: optional, int if you wish to prescribe an alternate route for car
:param alternate_route: list: optional, list of alternate route nodes for provided car
:return state: dict
"""
# TODO: combine this function with other car initialization functions using flags
nodes = nav.find_nodes(graph, n)
cars_data = []
for i in range(n):
if i < n - 1:
origin = nodes[i]
# random routes end at culdesacs
# culdesacs = nav.find_culdesacs()
# destination = culdesacs[i % len(culdesacs)]
# random routes end at random places too
random_index = round(random.random() * n)
destination = nodes[random_index] if random_index != n else nodes[0]
try:
path = nav.get_init_path(graph, origin, destination)
route = nav.get_route(graph, origin, destination)
except NetworkXNoPath:
print('No path between {} and {}.'.format(origin, destination))
continue
x, y = nav.get_position_of_node(graph, origin)
car = {'object': 'car',
'x': x,
'y': y,
'vx': 0,
'vy': 0,
'route-time': 0,
'origin': origin,
'destination': destination,
'route': route,
'xpath': [path[i][0] for i in range(len(path))],
'ypath': [path[i][1] for i in range(len(path))],
'distance-to-car': 0,
'distance-to-node': 0,
'distance-to-red-light': 0}
cars_data.append(car)
if alternate_route:
cars_data[car_id]['route'], cars_data[car_id]['xpath'], cars_data[car_id]['ypath'] = alternate_route
cars = pd.DataFrame(cars_data)
# determine binning and assign bins to cars
axis = graph.axis
xbins, ybins = np.arange(axis[0], axis[1], 200), np.arange(axis[2], axis[3], 200)
x_indices, y_indices = np.digitize(cars['x'], xbins), np.digitize(cars['y'], ybins)
cars['xbin'], cars['ybin'] = pd.Series(x_indices), pd.Series(y_indices)
print('Number of cars: {}'.format(len(cars)))
return cars
def init_culdesac_start_location(n, graph, car_id=None, alternate_route=None):
"""
initializes N cars into N culdesacs
Parameters
__________
:param n: int
:param graph: object: OGraph object from osm_request
:param car_id: None or int: optional, int if you wish to prescribe an alternate route for car
:param alternate_route: list: optional, list of alternate route nodes for provided car
Returns
_______
:return cars: dataframe
"""
# TODO: combine this function with other car initialization functions using flags
culdesacs = nav.find_culdesacs(graph)
if n > len(culdesacs):
raise ValueError('Number of cars greater than culdesacs to place them. '
'Choose a number less than {}'.format(len(culdesacs)))
cars_data = []
for i in range(n):
# i = 17 # TEMP SETTING
origin = culdesacs[i]
destination = culdesacs[i + 1]
""" START TEMP SETTINGS FOR ONE-CAR-ONE-ROUTE STUDY """
# destination = 53028190
""" END TEMP SETTINGS FOR ONE-CAR-ONE-ROUTE STUDY """
try:
path = nav.get_init_path(graph, origin, destination)
route = nav.get_route(graph, origin, destination)
except NetworkXNoPath:
print('No path between {} and {}.'.format(origin, destination))
continue
position = nav.get_position_of_node(graph, origin)
car = {'object': 'car',
'x': position[0],
'y': position[1],
'vx': 0,
'vy': 0,
'route-time': 0,
'origin': origin,
'destination': destination,
'route': route,
'xpath': [path[i][0] for i in range(len(path))],
'ypath': [path[i][1] for i in range(len(path))],
'distance-to-car': 0,
'distance-to-node': 0,
'distance-to-red-light': 0}
cars_data.append(car)
if alternate_route:
cars_data[car_id]['route'], cars_data[car_id]['xpath'], cars_data[car_id]['ypath'] = alternate_route
cars = pd.DataFrame(cars_data)
# determine binning and assign bins to cars
cars['xbin'], cars['ybin'] = models.determine_bins(graph.axis, cars)
# print('Number of cars: {}'.format(len(cars)))
return cars
def init_traffic_lights(graph, prescale=10):
"""
traffic lights are initialized here
:param graph: object: OGraph object from osm_request
:param prescale: int: percentage of intersections in graph to skip over and not create a light
:return lights: list
"""
epsilon = 0.3 # a factor which forces the positions of the light faces to be close to the intersection
light_nodes = nav.find_traffic_lights(graph, prescale)
lights_data = []
for i, light in enumerate(light_nodes):
node_id = light[0]
try:
out_vectors = np.array(nav.determine_pedigree(graph, node_id))
except NetworkXNoPath or ValueError:
print('Could not determine pedigree for light at node {}'.format(node_id))
continue
degree = len(out_vectors)
position = nav.get_position_of_node(graph, node_id)
go = [False, True] * degree * 2
go = go[:degree]
light = {'object': 'light',
'node': node_id,
'degree': degree,
'x': position[0],
'y': position[1],
'switch-counter': 0,
'switch-time': models.determine_traffic_light_timer(degree)
}
light['out-xpositions'] = [position[0] + epsilon * out_vectors[j][0] for j in range(light['degree'])]
light['out-ypositions'] = [position[1] + epsilon * out_vectors[j][1] for j in range(light['degree'])]
light['out-xvectors'] = [out_vectors[j][0] for j in range(light['degree'])]
light['out-yvectors'] = [out_vectors[j][1] for j in range(light['degree'])]
light['go-values'] = np.array([go[j] for j in range(light['degree'])])
lights_data.append(light)
lights = pd.DataFrame(lights_data)
# determine binning and assign bins to lights
lights['xbin'], lights['ybin'] = models.determine_bins(graph.axis, lights)
# print('Number of traffic lights: {}'.format(len(lights)))
return lights