-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdpm_solver_pytorch.py
735 lines (664 loc) · 31.3 KB
/
dpm_solver_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
import torch
import torch.nn.functional as F
import math
class NoiseScheduleVP:
def __init__(self, schedule="linear"):
"""Create a wrapper class for the forward SDE (VP type).
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
log_alpha_t = self.marginal_log_mean_coeff(t)
sigma_t = self.marginal_std(t)
lambda_t = self.marginal_lambda(t)
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
t = self.inverse_lambda(lambda_t)
===============================================================
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
schedule are the default settings in DDPM and improved-DDPM:
beta_min: A `float` number. The smallest beta for the linear schedule.
beta_max: A `float` number. The largest beta for the linear schedule.
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
T: A `float` number. The ending time of the forward process.
Note that the original DDPM (linear schedule) used the discrete-time label (0 to 999). We convert the discrete-time
label to the continuous-time time (followed Song et al., 2021), so the beta here is 1000x larger than those in DDPM.
===============================================================
Args:
schedule: A `str`. The noise schedule of the forward SDE ('linear' or 'cosine').
Returns:
A wrapper object of the forward SDE (VP type).
"""
if schedule not in ["linear", "cosine"]:
raise ValueError(
"Unsupported noise schedule {}. The schedule needs to be 'linear' or 'cosine'".format(
schedule
)
)
self.beta_0 = 0.1
self.beta_1 = 20
self.cosine_s = 0.008
self.cosine_beta_max = 999.0
self.cosine_t_max = (
math.atan(self.cosine_beta_max * (1.0 + self.cosine_s) / math.pi)
* 2.0
* (1.0 + self.cosine_s)
/ math.pi
- self.cosine_s
)
self.cosine_log_alpha_0 = math.log(
math.cos(self.cosine_s / (1.0 + self.cosine_s) * math.pi / 2.0)
)
self.schedule = schedule
if schedule == "cosine":
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
self.T = 0.9946
else:
self.T = 1.0
def marginal_log_mean_coeff(self, t):
"""
Compute log(alpha_t) of a given continuous-time label t in [0, T].
"""
if self.schedule == "linear":
return -0.25 * t**2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
elif self.schedule == "cosine":
log_alpha_fn = lambda s: torch.log(
torch.cos((s + self.cosine_s) / (1.0 + self.cosine_s) * math.pi / 2.0)
)
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
return log_alpha_t
else:
raise ValueError("Unsupported ")
def marginal_std(self, t):
"""
Compute sigma_t of a given continuous-time label t in [0, T].
"""
return torch.sqrt(1.0 - torch.exp(2.0 * self.marginal_log_mean_coeff(t)))
def marginal_lambda(self, t):
"""
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
"""
log_mean_coeff = self.marginal_log_mean_coeff(t)
log_std = 0.5 * torch.log(1.0 - torch.exp(2.0 * log_mean_coeff))
return log_mean_coeff - log_std
def inverse_lambda(self, lamb):
"""
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
"""
if self.schedule == "linear":
tmp = (
2.0
* (self.beta_1 - self.beta_0)
* torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb))
)
Delta = self.beta_0**2 + tmp
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
else:
log_alpha = -0.5 * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb))
t_fn = (
lambda log_alpha_t: torch.arccos(
torch.exp(log_alpha_t + self.cosine_log_alpha_0)
)
* 2.0
* (1.0 + self.cosine_s)
/ math.pi
- self.cosine_s
)
t = t_fn(log_alpha)
return t
def model_wrapper(
model,
noise_schedule=None,
is_cond_classifier=False,
classifier_fn=None,
classifier_scale=1.0,
time_input_type="1",
total_N=1000,
model_kwargs={},
):
"""Create a wrapper function for the noise prediction model.
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
firstly wrap the model function to a function that accepts the continuous time as the input.
The input `model` has the following format:
``
model(x, t_input, **model_kwargs) -> noise
``
where `x` and `noise` have the same shape, and `t_input` is the time label of the model.
(may be discrete-time labels (i.e. 0 to 999) or continuous-time labels (i.e. epsilon to T).)
We wrap the model function to the following format:
``
def model_fn(x, t_continuous) -> noise:
t_input = get_model_input_time(t_continuous)
return model(x, t_input, **model_kwargs)
``
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
For DPMs with classifier guidance, we also combine the model output with the classifier gradient as used in [1].
[1] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," in Advances in Neural
Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
===============================================================
Args:
model: A noise prediction model with the following format:
``
def model(x, t_input, **model_kwargs):
return noise
``
noise_schedule: A noise schedule object, such as NoiseScheduleVP. Only used for the classifier guidance.
is_cond_classifier: A `bool`. Whether to use the classifier guidance.
classifier_fn: A classifier function. Only used for the classifier guidance. The format is:
``
def classifier_fn(x, t_input):
return logits
``
classifier_scale: A `float`. The scale for the classifier guidance.
time_input_type: A `str`. The type for the time input of the model. We support three types:
- '0': The continuous-time type. In this case, the model is trained on the continuous time,
so `t_input` = `t_continuous`.
- '1': The Type-1 discrete type described in the Appendix of DPM-Solver paper.
**For discrete-time DPMs, we recommend to use this type for DPM-Solver**.
- '2': The Type-2 discrete type described in the Appendix of DPM-Solver paper.
total_N: A `int`. The total number of the discrete-time DPMs (default is 1000), used when `time_input_type`
is '1' or '2'.
model_kwargs: A `dict`. A dict for the other inputs of the model function.
Returns:
A function that accepts the continuous time as the input, with the following format:
``
def model_fn(x, t_continuous):
t_input = get_model_input_time(t_continuous)
return model(x, t_input, **model_kwargs)
``
"""
def get_model_input_time(t_continuous):
"""
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
"""
if time_input_type == "0":
# discrete_type == '0' means that the model is continuous-time model.
# For continuous-time DPMs, the continuous time equals to the discrete time.
return t_continuous
elif time_input_type == "1":
# Type-1 discrete label, as detailed in the Appendix of DPM-Solver.
return 1000.0 * torch.max(
t_continuous - 1.0 / total_N,
torch.zeros_like(t_continuous).to(t_continuous),
)
elif time_input_type == "2":
# Type-2 discrete label, as detailed in the Appendix of DPM-Solver.
max_N = (total_N - 1) / total_N * 1000.0
return max_N * t_continuous
else:
raise ValueError(
"Unsupported time input type {}, must be '0' or '1' or '2'".format(
time_input_type
)
)
def cond_fn(x, t_discrete, y):
"""
Compute the gradient of the classifier, multiplied with the sclae of the classifier guidance.
"""
assert y is not None
with torch.enable_grad():
x_in = x.detach().requires_grad_(True)
logits = classifier_fn(x_in, t_discrete)
log_probs = F.log_softmax(logits, dim=-1)
selected = log_probs[range(len(logits)), y.view(-1)]
return classifier_scale * torch.autograd.grad(selected.sum(), x_in)[0]
def model_fn(x, t_continuous):
"""
The noise predicition model function that is used for DPM-Solver.
"""
if is_cond_classifier:
y = model_kwargs.get("y", None)
if y is None:
raise ValueError(
"For classifier guidance, the label y has to be in the input."
)
t_discrete = get_model_input_time(t_continuous)
noise_uncond = model(x, t_discrete, **model_kwargs)
cond_grad = cond_fn(x, t_discrete, y)
sigma_t = noise_schedule.marginal_std(t_continuous)
dims = len(cond_grad.shape) - 1
return noise_uncond - sigma_t[(...,) + (None,) * dims] * cond_grad
else:
t_discrete = get_model_input_time(t_continuous)
return model(x, t_discrete, **model_kwargs)
return model_fn
class DPM_Solver:
def __init__(self, model_fn, noise_schedule):
"""Construct a DPM-Solver.
Args:
model_fn: A noise prediction model function which accepts the continuous-time input
(t in [epsilon, T]):
``
def model_fn(x, t_continuous):
return noise
``
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
"""
self.model_fn = model_fn
self.noise_schedule = noise_schedule
def get_time_steps(self, skip_type, t_T, t_0, N, device):
"""Compute the intermediate time steps for sampling.
Args:
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
- 'logSNR': uniform logSNR for the time steps, **recommended for DPM-Solver**.
- 'time_uniform': uniform time for the time steps. (Used in DDIM and DDPM.)
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
t_T: A `float`. The starting time of the sampling (default is T).
t_0: A `float`. The ending time of the sampling (default is epsilon).
N: A `int`. The total number of the spacing of the time steps.
device: A torch device.
Returns:
A pytorch tensor of the time steps, with the shape (N + 1,).
"""
if skip_type == "logSNR":
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
logSNR_steps = torch.linspace(lambda_T, lambda_0, N + 1).to(device)
return self.noise_schedule.inverse_lambda(logSNR_steps)
elif skip_type == "time_uniform":
return torch.linspace(t_T, t_0, N + 1).to(device)
elif skip_type == "time_quadratic":
t = torch.linspace(t_0, t_T, 10000000).to(device)
quadratic_t = torch.sqrt(t)
quadratic_steps = torch.linspace(quadratic_t[0], quadratic_t[-1], N + 1).to(
device
)
return torch.flip(
torch.cat(
[
t[torch.searchsorted(quadratic_t, quadratic_steps)[:-1]],
t_T * torch.ones((1,)).to(device),
],
dim=0,
),
dims=[0],
)
else:
raise ValueError(
"Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(
skip_type
)
)
def get_time_steps_for_dpm_solver_fast(self, t_T, t_0, steps, device):
"""
Compute the intermediate time steps and the order of each step for sampling by DPM-Solver-fast.
We recommend DPM-Solver-fast for fast sampling of DPMs. Given a fixed number of function evaluations by `steps`,
the sampling procedure by DPM-Solver-fast is:
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
============================================
Args:
t_T: A `float`. The starting time of the sampling (default is T).
t_0: A `float`. The ending time of the sampling (default is epsilon).
steps: A `int`. The total number of function evaluations (NFE).
device: A torch device.
Returns:
orders: A list of the solver order of each step.
timesteps: A pytorch tensor of the time steps, with the shape of (K + 1,).
"""
K = steps // 3 + 1
if steps % 3 == 0:
orders = [
3,
] * (
K - 2
) + [2, 1]
elif steps % 3 == 1:
orders = [
3,
] * (
K - 1
) + [1]
else:
orders = [
3,
] * (
K - 1
) + [2]
timesteps = self.get_time_steps("logSNR", t_T, t_0, K, device)
return orders, timesteps
def dpm_solver_first_update(self, x, s, t, return_noise=False):
"""
A single step for DPM-Solver-1.
Args:
x: A pytorch tensor. The initial value at time `s`.
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
return_noise: A `bool`. If true, also return the predicted noise at time `s`.
Returns:
x_t: A pytorch tensor. The approximated solution at time `t`.
"""
ns = self.noise_schedule
dims = len(x.shape) - 1
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
h = lambda_t - lambda_s
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(
s
), ns.marginal_log_mean_coeff(t)
sigma_t = ns.marginal_std(t)
phi_1 = torch.expm1(h)
noise_s = self.model_fn(x, s)
x_t = (
torch.exp(log_alpha_t - log_alpha_s)[(...,) + (None,) * dims] * x
- (sigma_t * phi_1)[(...,) + (None,) * dims] * noise_s
)
if return_noise:
return x_t, {"noise_s": noise_s}
else:
return x_t
def dpm_solver_second_update(
self, x, s, t, r1=0.5, noise_s=None, return_noise=False
):
"""
A single step for DPM-Solver-2.
Args:
x: A pytorch tensor. The initial value at time `s`.
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
r1: A `float`. The hyperparameter of the second-order solver. We recommend the default setting `0.5`.
noise_s: A pytorch tensor. The predicted noise at time `s`.
If `noise_s` is None, we compute the predicted noise by `x` and `s`; otherwise we directly use it.
return_noise: A `bool`. If true, also return the predicted noise at time `s` and `s1` (the intermediate time).
Returns:
x_t: A pytorch tensor. The approximated solution at time `t`.
"""
ns = self.noise_schedule
dims = len(x.shape) - 1
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
h = lambda_t - lambda_s
lambda_s1 = lambda_s + r1 * h
s1 = ns.inverse_lambda(lambda_s1)
log_alpha_s, log_alpha_s1, log_alpha_t = (
ns.marginal_log_mean_coeff(s),
ns.marginal_log_mean_coeff(s1),
ns.marginal_log_mean_coeff(t),
)
sigma_s1, sigma_t = ns.marginal_std(s1), ns.marginal_std(t)
phi_11 = torch.expm1(r1 * h)
phi_1 = torch.expm1(h)
if noise_s is None:
noise_s = self.model_fn(x, s)
x_s1 = (
torch.exp(log_alpha_s1 - log_alpha_s)[(...,) + (None,) * dims] * x
- (sigma_s1 * phi_11)[(...,) + (None,) * dims] * noise_s
)
noise_s1 = self.model_fn(x_s1, s1)
x_t = (
torch.exp(log_alpha_t - log_alpha_s)[(...,) + (None,) * dims] * x
- (sigma_t * phi_1)[(...,) + (None,) * dims] * noise_s
- (0.5 / r1)
* (sigma_t * phi_1)[(...,) + (None,) * dims]
* (noise_s1 - noise_s)
)
if return_noise:
return x_t, {"noise_s": noise_s, "noise_s1": noise_s1}
else:
return x_t
def dpm_solver_third_update(
self,
x,
s,
t,
r1=1.0 / 3.0,
r2=2.0 / 3.0,
noise_s=None,
noise_s1=None,
noise_s2=None,
):
"""
A single step for DPM-Solver-3.
Args:
x: A pytorch tensor. The initial value at time `s`.
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
r1: A `float`. The hyperparameter of the third-order solver. We recommend the default setting `1 / 3`.
r2: A `float`. The hyperparameter of the third-order solver. We recommend the default setting `2 / 3`.
noise_s: A pytorch tensor. The predicted noise at time `s`.
If `noise_s` is None, we compute the predicted noise by `x` and `s`; otherwise we directly use it.
noise_s1: A pytorch tensor. The predicted noise at time `s1` (the intermediate time given by `r1`).
If `noise_s1` is None, we compute the predicted noise by `s1`; otherwise we directly use it.
Returns:
x_t: A pytorch tensor. The approximated solution at time `t`.
"""
ns = self.noise_schedule
dims = len(x.shape) - 1
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
h = lambda_t - lambda_s
lambda_s1 = lambda_s + r1 * h
lambda_s2 = lambda_s + r2 * h
s1 = ns.inverse_lambda(lambda_s1)
s2 = ns.inverse_lambda(lambda_s2)
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = (
ns.marginal_log_mean_coeff(s),
ns.marginal_log_mean_coeff(s1),
ns.marginal_log_mean_coeff(s2),
ns.marginal_log_mean_coeff(t),
)
sigma_s1, sigma_s2, sigma_t = (
ns.marginal_std(s1),
ns.marginal_std(s2),
ns.marginal_std(t),
)
phi_11 = torch.expm1(r1 * h)
phi_12 = torch.expm1(r2 * h)
phi_1 = torch.expm1(h)
phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.0
phi_2 = torch.expm1(h) / h - 1.0
if noise_s is None:
noise_s = self.model_fn(x, s)
if noise_s1 is None:
x_s1 = (
torch.exp(log_alpha_s1 - log_alpha_s)[(...,) + (None,) * dims] * x
- (sigma_s1 * phi_11)[(...,) + (None,) * dims] * noise_s
)
noise_s1 = self.model_fn(x_s1, s1)
if noise_s2 is None:
x_s2 = (
torch.exp(log_alpha_s2 - log_alpha_s)[(...,) + (None,) * dims] * x
- (sigma_s2 * phi_12)[(...,) + (None,) * dims] * noise_s
- r2
/ r1
* (sigma_s2 * phi_22)[(...,) + (None,) * dims]
* (noise_s1 - noise_s)
)
noise_s2 = self.model_fn(x_s2, s2)
x_t = (
torch.exp(log_alpha_t - log_alpha_s)[(...,) + (None,) * dims] * x
- (sigma_t * phi_1)[(...,) + (None,) * dims] * noise_s
- (1.0 / r2)
* (sigma_t * phi_2)[(...,) + (None,) * dims]
* (noise_s2 - noise_s)
)
return x_t
def dpm_solver_update(self, x, s, t, order):
"""
A single step for DPM-Solver of the given order `order`.
Args:
x: A pytorch tensor. The initial value at time `s`.
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
Returns:
x_t: A pytorch tensor. The approximated solution at time `t`.
"""
if order == 1:
return self.dpm_solver_first_update(x, s, t)
elif order == 2:
return self.dpm_solver_second_update(x, s, t)
elif order == 3:
return self.dpm_solver_third_update(x, s, t)
else:
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
def dpm_solver_adaptive(
self,
x,
order,
t_T,
t_0,
h_init=0.05,
atol=0.0078,
rtol=0.05,
theta=0.9,
t_err=1e-5,
):
"""
The adaptive step size solver based on DPM-Solver.
Args:
x: A pytorch tensor. The initial value at time `t_T`.
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
t_T: A `float`. The starting time of the sampling (default is T).
t_0: A `float`. The ending time of the sampling (default is epsilon).
h_init: A `float`. The initial step size (for logSNR).
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
Returns:
x_0: A pytorch tensor. The approximated solution at time `t_0`.
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
"""
ns = self.noise_schedule
s = t_T * torch.ones((x.shape[0],)).to(x)
lambda_s = ns.marginal_lambda(s)
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
h = h_init * torch.ones_like(s).to(x)
x_prev = x
nfe = 0
if order == 2:
r1 = 0.5
lower_update = lambda x, s, t: self.dpm_solver_first_update(
x, s, t, return_noise=True
)
higher_update = lambda x, s, t, **kwargs: self.dpm_solver_second_update(
x, s, t, r1=r1, **kwargs
)
elif order == 3:
r1, r2 = 1.0 / 3.0, 2.0 / 3.0
lower_update = lambda x, s, t: self.dpm_solver_second_update(
x, s, t, r1=r1, return_noise=True
)
higher_update = lambda x, s, t, **kwargs: self.dpm_solver_third_update(
x, s, t, r1=r1, r2=r2, **kwargs
)
else:
raise ValueError(
"For adaptive step size solver, order must be 2 or 3, got {}".format(
order
)
)
while torch.abs((s - t_0)).mean() > t_err:
t = ns.inverse_lambda(lambda_s + h)
x_lower, lower_noise_kwargs = lower_update(x, s, t)
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
delta = torch.max(
torch.ones_like(x).to(x) * atol,
rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)),
)
norm_fn = lambda v: torch.sqrt(
torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True)
)
E = norm_fn((x_higher - x_lower) / delta).max()
if torch.all(E <= 1.0):
x = x_higher
s = t
x_prev = x_lower
lambda_s = ns.marginal_lambda(s)
h = torch.min(
theta * h * torch.float_power(E, -1.0 / order).float(),
lambda_0 - lambda_s,
)
nfe += order
print("adaptive solver nfe", nfe)
return x
def sample(
self,
x,
steps=10,
eps=1e-4,
T=None,
order=3,
skip_type="logSNR",
adaptive_step_size=False,
fast_version=True,
atol=0.0078,
rtol=0.05,
):
"""
Compute the sample at time `eps` by DPM-Solver, given the initial `x` at time `T`.
We support the following algorithms:
- Adaptive step size DPM-Solver (i.e. DPM-Solver-12 and DPM-Solver-23)
- Fixed order DPM-Solver (i.e. DPM-Solver-1, DPM-Solver-2 and DPM-Solver-3).
- Fast version of DPM-Solver (i.e. DPM-Solver-fast), which uses uniform logSNR steps and combine
different orders of DPM-Solver.
**We recommend DPM-Solver-fast for both fast sampling in few steps (<=20) and fast convergence in many steps (50 to 100).**
Choosing the algorithms:
- If `adaptive_step_size` is True:
We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
If `order`=2, we use DPM-Solver-12 which combines DPM-Solver-1 and DPM-Solver-2.
If `order`=3, we use DPM-Solver-23 which combines DPM-Solver-2 and DPM-Solver-3.
You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
(NFE) and the sample quality.
- If `adaptive_step_size` is False and `fast_version` is True:
We ignore `order` and use DPM-Solver-fast with number of function evaluations (NFE) = `steps`.
We ignore `skip_type` and use uniform logSNR steps for DPM-Solver-fast.
Given a fixed NFE=`steps`, the sampling procedure by DPM-Solver-fast is:
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
- If `adaptive_step_size` is False and `fast_version` is False:
We use DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
We support three types of `skip_type`:
- 'logSNR': uniform logSNR for the time steps, **recommended for DPM-Solver**.
- 'time_uniform': uniform time for the time steps. (Used in DDIM and DDPM.)
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM.)
=====================================================
Args:
x: A pytorch tensor. The initial value at time `T` (a sample from the normal distribution).
steps: A `int`. The total number of function evaluations (NFE).
eps: A `float`. The ending time of the sampling.
We recommend `eps`=1e-3 when `steps` <= 15; and `eps`=1e-4 when `steps` > 15.
T: A `float`. The starting time of the sampling. Default is `None`.
If `T` is None, we use self.noise_schedule.T.
order: A `int`. The order of DPM-Solver.
skip_type: A `str`. The type for the spacing of the time steps. Default is 'logSNR'.
adaptive_step_size: A `bool`. If true, use the adaptive step size DPM-Solver.
fast_version: A `bool`. If true, use DPM-Solver-fast (recommended).
atol: A `float`. The absolute tolerance of the adaptive step size solver.
rtol: A `float`. The relative tolerance of the adaptive step size solver.
Returns:
x_0: A pytorch tensor. The approximated solution at time `t_0`.
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
"""
t_0 = eps
t_T = self.noise_schedule.T if T is None else T
device = x.device
if adaptive_step_size:
with torch.no_grad():
x = self.dpm_solver_adaptive(
x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol
)
else:
if fast_version:
orders, timesteps = self.get_time_steps_for_dpm_solver_fast(
t_T=t_T, t_0=t_0, steps=steps, device=device
)
else:
N_steps = steps // order
orders = [
order,
] * N_steps
timesteps = self.get_time_steps(
skip_type=skip_type, t_T=t_T, t_0=t_0, N=N_steps, device=device
)
with torch.no_grad():
for i, order in enumerate(orders):
vec_s, vec_t = (
torch.ones((x.shape[0],)).to(device) * timesteps[i],
torch.ones((x.shape[0],)).to(device) * timesteps[i + 1],
)
x = self.dpm_solver_update(x, vec_s, vec_t, order)
return x