You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I followed and copied the code on your main page, however it did not behave normally:
ValueError Traceback (most recent call last)
Cell In[5], line 4
1 from stable_diffusion_tf.stable_diffusion import StableDiffusion
2 from PIL import Image
----> 4 generator = StableDiffusion()
File ~/anaconda3/envs/art_intel/lib/python3.9/site-packages/keras/utils/traceback_utils.py:70, in filter_traceback..error_handler(*args, **kwargs)
67 filtered_tb = _process_traceback_frames(e.traceback)
68 # To get the full stack trace, call:
69 # tf.debugging.disable_traceback_filtering()
---> 70 raise e.with_traceback(filtered_tb) from None
71 finally:
72 del filtered_tb
File /tmp/autograph_generated_file612zmgqy.py:21, in outer_factory..inner_factory..tf__apply_seq..loop_body(itr)
19 nonlocal x
20 l = itr
---> 21 x = ag.converted_call(ag__.ld(l), (ag__.ld(x),), None, fscope)
File ~/anaconda3/envs/art_intel/lib/python3.9/site-packages/tensorflow_addons/layers/normalizations.py:227, in GroupNormalization._check_size_of_dimensions(self, input_shape)
225 dim = input_shape[self.axis]
226 if dim < self.groups:
--> 227 raise ValueError(
228 "Number of groups (" + str(self.groups) + ") cannot be "
229 "more than the number of channels (" + str(dim) + ")."
230 )
232 if dim % self.groups != 0:
233 raise ValueError(
234 "Number of groups (" + str(self.groups) + ") must be a "
235 "multiple of the number of channels (" + str(dim) + ")."
236 )
ValueError: Exception encountered when calling layer "u_net_model_1" (type UNetModel).
in user code:
File "/home/ec2-user/anaconda3/envs/art_intel/lib/python3.9/site-packages/stable_diffusion_tf/diffusion_model.py", line 199, in apply *
x = layer([x, emb])
File "/home/ec2-user/anaconda3/envs/art_intel/lib/python3.9/site-packages/keras/utils/traceback_utils.py", line 70, in error_handler **
raise e.with_traceback(filtered_tb) from None
File "/tmp/__autograph_generated_filem_kzpxnn.py", line 11, in tf__call
h = ag__.converted_call(ag__.ld(apply_seq), (ag__.ld(x), ag__.ld(self).in_layers), None, fscope)
File "/tmp/__autograph_generated_file612zmgqy.py", line 23, in tf__apply_seq
ag__.for_stmt(ag__.ld(layers), None, loop_body, get_state, set_state, ('x',), {'iterate_names': 'l'})
File "/tmp/autograph_generated_file612zmgqy.py", line 21, in loop_body
x = ag.converted_call(ag__.ld(l), (ag__.ld(x),), None, fscope)
File "/home/ec2-user/anaconda3/envs/art_intel/lib/python3.9/site-packages/tensorflow_addons/layers/normalizations.py", line 110, in build
self._check_size_of_dimensions(input_shape)
File "/home/ec2-user/anaconda3/envs/art_intel/lib/python3.9/site-packages/tensorflow_addons/layers/normalizations.py", line 227, in _check_size_of_dimensions
raise ValueError(
ValueError: Exception encountered when calling layer "res_block_22" " f"(type ResBlock).
in user code:
File "/home/ec2-user/anaconda3/envs/art_intel/lib/python3.9/site-packages/stable_diffusion_tf/diffusion_model.py", line 31, in call *
h = apply_seq(x, self.in_layers)
File "/home/ec2-user/anaconda3/envs/art_intel/lib/python3.9/site-packages/stable_diffusion_tf/layers.py", line 41, in apply_seq *
x = l(x)
File "/home/ec2-user/anaconda3/envs/art_intel/lib/python3.9/site-packages/keras/utils/traceback_utils.py", line 70, in error_handler **
raise e.with_traceback(filtered_tb) from None
File "/home/ec2-user/anaconda3/envs/art_intel/lib/python3.9/site-packages/tensorflow_addons/layers/normalizations.py", line 110, in build
self._check_size_of_dimensions(input_shape)
File "/home/ec2-user/anaconda3/envs/art_intel/lib/python3.9/site-packages/tensorflow_addons/layers/normalizations.py", line 227, in _check_size_of_dimensions
raise ValueError(
ValueError: Number of groups (32) cannot be more than the number of channels (4).
Call arguments received by layer "res_block_22" " f"(type ResBlock):
• inputs=['tf.Tensor(shape=(None, 320, 125, 4), dtype=float32)', 'tf.Tensor(shape=(None, 1280), dtype=float32)']
@WSINTRA
A 512x512 image.
I have already tried the code on the main page and added img_height=..., img_width=..., but that did not work. I still got the same error.
I followed and copied the code on your main page, however it did not behave normally:
ValueError Traceback (most recent call last)
Cell In[5], line 4
1 from stable_diffusion_tf.stable_diffusion import StableDiffusion
2 from PIL import Image
----> 4 generator = StableDiffusion()
File ~/anaconda3/envs/art_intel/lib/python3.9/site-packages/stable_diffusion_tf/stable_diffusion.py:24, in StableDiffusion.init(self, img_height, img_width, jit_compile, download_weights)
21 self.img_width = img_width
22 self.tokenizer = SimpleTokenizer()
---> 24 text_encoder, diffusion_model, decoder, encoder = get_models(img_height, img_width, download_weights=download_weights)
25 self.text_encoder = text_encoder
26 self.diffusion_model = diffusion_model
File ~/anaconda3/envs/art_intel/lib/python3.9/site-packages/stable_diffusion_tf/stable_diffusion.py:238, in get_models(img_height, img_width, download_weights)
235 latent = keras.layers.Input((n_h, n_w, 4))
236 unet = UNetModel()
237 diffusion_model = keras.models.Model(
--> 238 [latent, t_emb, context], unet([latent, t_emb, context])
239 )
241 # Create decoder
242 latent = keras.layers.Input((n_h, n_w, 4))
File ~/anaconda3/envs/art_intel/lib/python3.9/site-packages/keras/utils/traceback_utils.py:70, in filter_traceback..error_handler(*args, **kwargs)
67 filtered_tb = _process_traceback_frames(e.traceback)
68 # To get the full stack trace, call:
69 #
tf.debugging.disable_traceback_filtering()
---> 70 raise e.with_traceback(filtered_tb) from None
71 finally:
72 del filtered_tb
File /tmp/autograph_generated_file2lo7vt15.py:84, in outer_factory..inner_factory..tf__call(self, inputs)
82 layer = ag.Undefined('layer')
83 b = ag__.Undefined('b')
---> 84 ag__.for_stmt(ag__.ld(self).input_blocks, None, loop_body_1, get_state_3, set_state_3, ('x',), {'iterate_names': 'b'})
86 def get_state_4():
87 return (x,)
File /tmp/autograph_generated_file2lo7vt15.py:80, in outer_factory..inner_factory..tf__call..loop_body_1(itr_1)
78 layer = itr
79 x = ag.converted_call(ag__.ld(apply), (ag__.ld(x), ag__.ld(layer)), None, fscope)
---> 80 ag__.for_stmt(ag__.ld(b), None, loop_body, get_state_2, set_state_2, ('x',), {'iterate_names': 'layer'})
81 ag__.converted_call(ag__.ld(saved_inputs).append, (ag__.ld(x),), None, fscope)
File /tmp/autograph_generated_file2lo7vt15.py:79, in outer_factory..inner_factory..tf__call..loop_body_1..loop_body(itr)
77 nonlocal x
78 layer = itr
---> 79 x = ag.converted_call(ag__.ld(apply), (ag__.ld(x), ag__.ld(layer)), None, fscope)
File /tmp/autograph_generated_file2lo7vt15.py:48, in outer_factory..inner_factory..tf__call..apply(x, layer)
46 x = ag.converted_call(ag__.ld(layer), (ag__.ld(x),), None, fscope_1)
47 ag__.if_stmt(ag__.converted_call(ag__.ld(isinstance), (ag__.ld(layer), ag__.ld(SpatialTransformer)), None, fscope_1), if_body, else_body, get_state, set_state, ('x',), 1)
---> 48 ag__.if_stmt(ag__.converted_call(ag__.ld(isinstance), (ag__.ld(layer), ag__.ld(ResBlock)), None, fscope_1), if_body_1, else_body_1, get_state_1, set_state_1, ('x',), 1)
49 try:
50 do_return_1 = True
File /tmp/autograph_generated_file2lo7vt15.py:28, in outer_factory..inner_factory..tf__call..apply..if_body_1()
26 def if_body_1():
27 nonlocal x
---> 28 x = ag.converted_call(ag__.ld(layer), ([ag__.ld(x), ag__.ld(emb)],), None, fscope_1)
File /tmp/autograph_generated_filem_kzpxnn.py:11, in outer_factory..inner_factory..tf__call(self, inputs)
9 retval = ag_.UndefinedReturnValue()
10 (x, emb) = ag__.ld(inputs)
---> 11 h = ag__.converted_call(ag__.ld(apply_seq), (ag__.ld(x), ag__.ld(self).in_layers), None, fscope)
12 emb_out = ag__.converted_call(ag__.ld(apply_seq), (ag__.ld(emb), ag__.ld(self).emb_layers), None, fscope)
13 h = ag__.ld(h) + ag__.ld(emb_out)[:, None, None]
File /tmp/autograph_generated_file612zmgqy.py:23, in outer_factory..inner_factory..tf__apply_seq(x, layers)
21 x = ag.converted_call(ag__.ld(l), (ag__.ld(x),), None, fscope)
22 l = ag__.Undefined('l')
---> 23 ag__.for_stmt(ag__.ld(layers), None, loop_body, get_state, set_state, ('x',), {'iterate_names': 'l'})
24 try:
25 do_return = True
File /tmp/autograph_generated_file612zmgqy.py:21, in outer_factory..inner_factory..tf__apply_seq..loop_body(itr)
19 nonlocal x
20 l = itr
---> 21 x = ag.converted_call(ag__.ld(l), (ag__.ld(x),), None, fscope)
File ~/anaconda3/envs/art_intel/lib/python3.9/site-packages/tensorflow_addons/layers/normalizations.py:110, in GroupNormalization.build(self, input_shape)
108 self._check_if_input_shape_is_none(input_shape)
109 self._set_number_of_groups_for_instance_norm(input_shape)
--> 110 self._check_size_of_dimensions(input_shape)
111 self._create_input_spec(input_shape)
113 self._add_gamma_weight(input_shape)
File ~/anaconda3/envs/art_intel/lib/python3.9/site-packages/tensorflow_addons/layers/normalizations.py:227, in GroupNormalization._check_size_of_dimensions(self, input_shape)
225 dim = input_shape[self.axis]
226 if dim < self.groups:
--> 227 raise ValueError(
228 "Number of groups (" + str(self.groups) + ") cannot be "
229 "more than the number of channels (" + str(dim) + ")."
230 )
232 if dim % self.groups != 0:
233 raise ValueError(
234 "Number of groups (" + str(self.groups) + ") must be a "
235 "multiple of the number of channels (" + str(dim) + ")."
236 )
ValueError: Exception encountered when calling layer "u_net_model_1" (type UNetModel).
in user code:
ag__.for_stmt(ag__.ld(layers), None, loop_body, get_state, set_state, ('x',), {'iterate_names': 'l'})
File "/tmp/autograph_generated_file612zmgqy.py", line 21, in loop_body
x = ag.converted_call(ag__.ld(l), (ag__.ld(x),), None, fscope)
File "/home/ec2-user/anaconda3/envs/art_intel/lib/python3.9/site-packages/tensorflow_addons/layers/normalizations.py", line 110, in build
self._check_size_of_dimensions(input_shape)
File "/home/ec2-user/anaconda3/envs/art_intel/lib/python3.9/site-packages/tensorflow_addons/layers/normalizations.py", line 227, in _check_size_of_dimensions
raise ValueError(
Call arguments received by layer "u_net_model_1" (type UNetModel):
• inputs=['tf.Tensor(shape=(None, 125, 125, 4), dtype=float32)', 'tf.Tensor(shape=(None, 320), dtype=float32)', 'tf.Tensor(shape=(None, 77, 768), dtype=float32)']
The text was updated successfully, but these errors were encountered: