-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathDISTS.m
162 lines (134 loc) · 5.5 KB
/
DISTS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
% This is a matlab implementation of calculating the
% Deep Image Structure and Texture Similarity (DISTS) between two images.
% https://github.com/dingkeyan93/DISTS
% Requirements: Matlab>=2019b
% Input:
% (1) img1: the first image being compared (range:0~255)
% (2) img2: the second image being compared (range:0~255)
% (3) params: the pretrained vgg16 parameters
% (4) weights: the trained perceptual weights
% (5) resize_img: if resize the input image to 256 (short side)
% (6) use_gpu: if use GPU to accelerate
% Output:
% (1) perceptual quality score between two images (smaller is better)
% Example:
% ref = imread('../images/r0.png');
% dist = imread('../images/r1.png');
% net_params = load('../weights/net_param.mat');
% weights = load('../weights/alpha_beta.mat');
% resize_img = 0;
% use_gpu = 0;
% score = DISTS(ref, dist,net_params,weights, resize_img, use_gpu) % 0.3347
% Note:
% The results of some images are a little different from the python version.
% Be suject to the pytorch version.
function score = DISTS(ref, dist, params, weights, resize, gpu)
ref_features = extract_features(ref,params,resize,gpu);
dist_features = extract_features(dist,params,resize,gpu);
dist1 = 0;
dist2 = 0;
c1 = 1e-6;
c2 = 1e-6;
chns = [3,64,128,256,512,512];
alpha = split_weights(weights.alpha,chns);
beta = split_weights(weights.beta,chns);
% weights_sum = sum(weights.alpha+weights.beta);
for i = 1:6
ref_mean = mean(ref_features{i},[1,2]);
dist_mean = mean(dist_features{i},[1,2]);
ref_var = mean((ref_features{i}-ref_mean).^2,[1,2]);
dist_var = mean((dist_features{i}-dist_mean).^2,[1,2]);
ref_dist_cov = mean(ref_features{i}.*dist_features{i},[1,2])-ref_mean.*dist_mean;
S1 = (2*ref_mean.*dist_mean+c1)./(ref_mean.^2+dist_mean.^2+c1);
S2 = (2*ref_dist_cov+c2)./(ref_var+dist_var+c2);
dist1 = dist1+sum(alpha{i}.*S1.squeeze());
dist2 = dist2+sum(beta{i}.*S2.squeeze());
end
score = extractdata(1-(dist1+dist2));
score = gather(score);
end
function features = extract_features(I, params, resize, gpu)
if resize && min(size(I,1),size(I,2))>256
I = imresize(I,256/min(size(I,1),size(I,2)));
end
if gpu
I = gpuArray(I);
end
I = dlarray(double(I)/255,'SSC');
features = cell(6,1);
% stage 0
features{1} = I;
dlX = (I - params.vgg_mean)./params.vgg_std;
% stage 1
weights = dlarray(params.conv1_1_weight);
bias = dlarray(params.conv1_1_bias');
dlY = relu(dlconv(dlX,weights,bias,'Stride',1,'Padding','same'));
weights = dlarray(params.conv1_2_weight);
bias = dlarray(params.conv1_2_bias');
dlY = relu(dlconv(dlY,weights,bias,'Stride',1,'Padding','same'));
features{2} = dlY;
% stage 2
weights = dlarray(params.L2pool_1);
dlY = dlconv(dlY.^2,weights,0,'Stride',2,'Padding',[1, 1; 0, 0]);
dlY = sqrt(dlY);
% dlY = avgpool(dlY,2,'Stride',2);
weights = dlarray(params.conv2_1_weight);
bias = dlarray(params.conv2_1_bias');
dlY = relu(dlconv(dlY,weights,bias,'Stride',1,'Padding','same'));
weights = dlarray(params.conv2_2_weight);
bias = dlarray(params.conv2_2_bias');
dlY = relu(dlconv(dlY,weights,bias,'Stride',1,'Padding','same'));
features{3} = dlY;
% stage 3
weights = dlarray(params.L2pool_2);
dlY = dlconv(dlY.^2,weights,0,'Stride',2,'Padding',[1, 1; 0, 0]);
dlY = sqrt(dlY);
% dlY = avgpool(dlY,2,'Stride',2);
weights = dlarray(params.conv3_1_weight);
bias = dlarray(params.conv3_1_bias');
dlY = relu(dlconv(dlY,weights,bias,'Stride',1,'Padding','same'));
weights = dlarray(params.conv3_2_weight);
bias = dlarray(params.conv3_2_bias');
dlY = relu(dlconv(dlY,weights,bias,'Stride',1,'Padding','same'));
weights = dlarray(params.conv3_3_weight);
bias = dlarray(params.conv3_3_bias');
dlY = relu(dlconv(dlY,weights,bias,'Stride',1,'Padding','same'));
features{4} = dlY;
% stage 4
weights = dlarray(params.L2pool_3);
dlY = dlconv(dlY.^2,weights,0,'Stride',2,'Padding',[1, 1; 0, 0]);
dlY = sqrt(dlY);
% dlY = avgpool(dlY,2,'Stride',2);
weights = dlarray(params.conv4_1_weight);
bias = dlarray(params.conv4_1_bias');
dlY = relu(dlconv(dlY,weights,bias,'Stride',1,'Padding','same'));
weights = dlarray(params.conv4_2_weight);
bias = dlarray(params.conv4_2_bias');
dlY = relu(dlconv(dlY,weights,bias,'Stride',1,'Padding','same'));
weights = dlarray(params.conv4_3_weight);
bias = dlarray(params.conv4_3_bias');
dlY = relu(dlconv(dlY,weights,bias,'Stride',1,'Padding','same'));
features{5} = dlY;
% stage 5
weights = dlarray(params.L2pool_4);
dlY = dlconv(dlY.^2,weights,0,'Stride',2,'Padding',[1, 1; 0, 0]);
dlY = sqrt(dlY);
% dlY = avgpool(dlY,2,'Stride',2);
weights = dlarray(params.conv5_1_weight);
bias = dlarray(params.conv5_1_bias');
dlY = relu(dlconv(dlY,weights,bias,'Stride',1,'Padding','same'));
weights = dlarray(params.conv5_2_weight);
bias = dlarray(params.conv5_2_bias');
dlY = relu(dlconv(dlY,weights,bias,'Stride',1,'Padding','same'));
weights = dlarray(params.conv5_3_weight);
bias = dlarray(params.conv5_3_bias');
dlY = relu(dlconv(dlY,weights,bias,'Stride',1,'Padding','same'));
features{6} = dlY;
end
function w_ = split_weights(w,chns)
w_ = cell(length(chns),1);
for i=1:length(chns)
w_{i}=w(1:chns(i))';
w(1:chns(i))=[];
end
end