-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathzeroshot.m
753 lines (688 loc) · 30 KB
/
zeroshot.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
function zeroshot(varargin)
% Will test order discovery in attribute+class learning
rng('shuffle');
try
close all
addpath(genpath('./lib/'));
params=parseArgs(varargin);
%% Learning on top of basic classifiers
if 1
if 1 % load file
if isempty(params.pretrain_data)
if ~exist('numNews','var')
numNews=params.numNews;
end
matfilename=sprintf('%s/%s_set%d_%d_%d_CP0%s.mat',params.OPfolder,params.filenameHeader, params.subSplitNo, params.cluster, params.process, repmat('(new)',1,numNews));
else
matfilename=params.pretrain_data;
end
makeLine(sprintf('CP1: Loading from %s', matfilename),'|',100);
origParams=params; % backup
load(matfilename);
params=origParams; clear('origParams');% clearing to avoid getting saved
end
%restrict all relevant variables to only use *valid* attributes i.e. attributes that have (enough) pos and neg samples in training, testing AND validation
IndSetNames={'trainingInd','valInd','testingInd'};
numAttr=size(class_attrib_mat.mean,2);
numClasses=size(class_attrib_mat.mean,1);
valAttr=true(1,numAttr);
for setno=1:length(IndSetNames)
ind=eval(sprintf('%s',IndSetNames{setno}));
if isempty(ind), continue; end
numPos=sum(attributematrix(ind,1:numAttr));
numNeg=sum(~attributematrix(ind,1:numAttr));
assert(all(numPos+numNeg==length(ind)), 'Sanity check failure');
valAttr= valAttr & numPos>0 & numNeg>0;
end
attrPred(:,~valAttr)=[];
attrConf(:,~valAttr)=[];
val_featRes(~valAttr)=[];
attributematrix(:,~valAttr)=[];
%attr_perclass(:,~valAttr)=[];
%attr_perimage(:,~valAttr)=[];
cont_attributematrix(:,~valAttr)=[];
%attributes(~valAttr)=[];
%concepts(~valAttr)=[];
class_attrib_mat.mean(:,~valAttr)=[];
class_attrib_mat.annot(:,~valAttr)=[];
%class_attrib_mat.std(:,~valAttr)=[];
numAttr=size(attributematrix,2);
basicConcepts=1:numAttr;
%figure, bar([featRes.AUC]);
%disp(mean([featRes.AUC]));
clear origParams
switch params.contClsAttMat
case true
conceptmatrix=cont_attributematrix;
otherwise
conceptmatrix=attributematrix;
end
try % assign featKnownScore
if params.useConf
featKnownScore=attrConf;
normalize_scores=true;
if normalize_scores
ul=max(featKnownScore);
ll=min(featKnownScore);
range=ul-ll;
numSamples=size(featKnownScore,1);
tmp=ones(1,numSamples);
featKnownScore=(featKnownScore-ll(tmp,:))./range(tmp,:);
end
else
featKnownScore=attrPred;
end
catch
warning('Could not assign featKnownScore correctly.');
end
% fixing name to save to
matfilename=sprintf('%s/%s_set%d_%d_%d_CP0',params.OPfolder,params.filenameHeader, params.subSplitNo, params.cluster, params.process);
numNews=0;
if ~params.overWrite
while exist([matfilename '.mat'],'var')
matfilename=[matfilename '(new)'];
numNews=numNews+1;
end
end
matfilename=[matfilename '.mat'];
%% set aside some data from test classes to be used as training data (few-shot)
if params.repeatable, rng(7732621); end
ord=randperm(numel(testingInd));
rng('shuffle');
setAsideFrac=0.1; % imposes a limit of ~600 data points on the size of the few-shot training set. More than enough for 10 classes.
ord=ord(1:setAsideFrac*numel(testingInd));
setAside=testingInd(ord);
testingInd=setdiff(testingInd,setAside);
fsInd=setAside(1:params.numShots); % limiting the portion of set-aside data that is used in few-shot setting
%% test zero-shot recognition with DAP
loop_methodList=intersect({'dap'}, params.selMethodNames);
if ~isempty(loop_methodList)
for methodNo=1:length(loop_methodList)
methodName=loop_methodList{methodNo};
makeLine(methodName);
switch methodName
case 'dap'
DAPfunc=@DAP_logsum;
clsPrior=ones(1,numClasses)/numClasses;
attrPrior=mean(class_attrib_mat.annot(unique(classes(trainingInd)),:));
attrPrior(attrPrior<eps)=0.5;
attrPrior(attrPrior>1-eps)=0.5;
otherwise
error('Unsupported method name!');
end
%confmat=cell2mat(arrayfun(@(x) getfield(x, 'conf'), featRes, 'UniformOutput', false));
confmat=attrConf(testingInd,:);
numTestCls=length(unique(classes(testingInd)));
[zsRes, zsMultiRes] = DAPfunc(struct('attributes',confmat,'class',classes(testingInd)), (class_attrib_mat.annot), attrPrior, clsPrior);
fprintf('\t# of testclasses: %d\n', numTestCls);
fprintf('\tMean AP: %f\n', mean([zsRes.AP]));
fprintf('\tMean AUC: %f\n', mean([zsRes.AUC]));
fprintf('\tMean Fscore: %f\n', mean([zsRes.Fscore]));
fprintf('\tMean normalized AP: %f\n', mean([zsRes.normAP]));
disp(zsMultiRes.overallAcc);
eval(sprintf('%sRes=zsRes;', methodName));
eval(sprintf('%sMultiRes=zsMultiRes;', methodName));
clear('zsRes', 'zsMultiRes');
if params.saveCP
varList={sprintf('%sRes', methodName), sprintf('%sMultiRes', methodName)};
if exist(matfilename)
varList{length(varList)+1}='-append';
end
makeLine(sprintf('Saving to %s', matfilename),'|',100);
save(matfilename, varList{:});
end
end
end
loop_methodList=intersect({'felix'}, params.selMethodNames);
if ~isempty(loop_methodList)
for methodNo=1:length(loop_methodList)
methodName=loop_methodList{methodNo};
makeLine(methodName);
switch methodName
case 'felix'
otherwise
error('Unsupported method name!');
end
%confmat=cell2mat(arrayfun(@(x) getfield(x, 'conf'), featRes, 'UniformOutput', false));% confidences
confmat=attrConf(testingInd,:);% confidences
confmat=2*confmat-1;
testClasses=unique(classes(testingInd));
A_test=2*class_attrib_mat.mean(testClasses,:)-1;
%A_test=double(2*class_attrib_mat.mean(testClasses,:)-1>0.5);
for i = 1:size(A_test,1)
A_test(i,:) = A_test(i,:)./norm(A_test(i,:),2);
end
[predict_class_label, error_att] = att_decoding(confmat, A_test, testClasses, classes(testingInd), 'loss');
%[zsRes, zsMultiRes] = DAPfunc(struct('attributes',confmat,'class',classes(testingInd)), (class_attrib_mat.annot), attrPrior, clsPrior);
zsRes(length(testClasses))=binClassRes;
for i=1:length(testClasses)
zsRes(i).AP=0;
zsRes(i).AUC=0;
zsRes(i).Fscore=0;
end
zsMultiRes.overallAcc=sum(predict_class_label'==classes(testingInd))/length(predict_class_label)*100;
zsMultiRes.confusion=[];
%fprintf('\tMean AP: %f\n', mean([zsRes.AP]));
%fprintf('\tMean AUC: %f\n', mean([zsRes.AUC]));
%fprintf('\tMean Fscore: %f\n', mean([zsRes.Fscore]));
%fprintf('\tMean normalized AP: %f\n', mean([zsRes.normAP]));
disp(zsMultiRes.overallAcc);
eval(sprintf('%sRes=zsRes;', methodName));
eval(sprintf('%sMultiRes=zsMultiRes;', methodName));
clear('zsRes', 'zsMultiRes');
if params.saveCP
varList={sprintf('%sRes', methodName), sprintf('%sMultiRes', methodName)};
if exist(matfilename)
varList{length(varList)+1}='-append';
end
makeLine(sprintf('Saving to %s', matfilename),'|',100);
save(matfilename, varList{:});
end
end
end
%% test zero-shot recognition with decision tree-based methods
if params.Dep.RF_train_args.depth==0 % code to automatically set depth
numValInd=length(valInd);
optDepth_est=round(log(numValInd)/log(2)-6);
optDepth_est=max(optDepth_est,3);
params.Dep.RF_train_args.depth=optDepth_est;
fprintf('Will use trees of depth: %d\n', optDepth_est);
end
loop_methodList=intersect({'zsDT','zsRF', 'zsRFwSampling', 'zsRFwCK','zsRFwValProp', 'zsRFwCKnROC', 'zsRFwValPropnROC', 'fsRF','fsRFwCK','fsRFwValProp','fsRFwCKnROC','fsRFwValPropnROC','fsRFwoPrior','zsRFwValPropnROC_noUncert','fsRFwValPropnROC_noUncert'}, params.selMethodNames);
if ~isempty(loop_methodList)
for methodNo=1:length(loop_methodList)
methodName=loop_methodList{methodNo};
testClasses=unique(classes(testingInd));
numSamples=500*length(testClasses);
clsPrior=ones(1,length(testClasses))/length(testClasses);
Xtr=zeros(numSamples,numAttr); clsVec=zeros(numSamples,1);
Ytr=cell(1,numAttr);
count=0;
for i=1:length(testClasses)
numClsSamples=clsPrior(i)*numSamples;
relInd=count+(1:numClsSamples);
switch params.contClsAttMat
case true
Xtr(relInd,:)=repmat(class_attrib_mat.mean(testClasses(i),:), numClsSamples, 1);
otherwise
Xtr(relInd,:)=repmat(class_attrib_mat.annot(testClasses(i),:), numClsSamples, 1);
end
clsVec(relInd)=i*ones(numClsSamples,1); % numbering test classes separately for this task
count=count+numClsSamples;
Ytr{i}=double(clsVec==i);
end
Xtr_old=Xtr;
% flip some bits of training data - signature uncertainty modeling
for i=1:numAttr
% flipping positive bits
tmp=find(Xtr(:,i)==1); % instances with positive class-level annotation
if params.repeatable, rng(12551); end
tmp=randperm(length(tmp)); % jumble
rng('shuffle');
tmp=tmp(1:params.flipFrac*length(tmp)); % randomly select annotations to flip
Xtr(tmp,i)=~Xtr(tmp,i); % flip to better represent instance-level (true) labels
% flipping negative bits
tmp=find(Xtr(:,i)==0); % instances with positive class-level annotation
tmp=randperm(length(tmp)); % jumble
tmp=tmp(1:0.0*length(tmp)); % select a fraction to flip
Xtr(tmp,i)=~Xtr(tmp,i); % flip to better represent instance-level (true) labels
end
makeLine(methodName);
fewShots=false;
switch methodName
case 'zsDT'
args=params.Dep.RF_train_args;
args.numTrees=1; % training single tree
args.depth=10;
args.numSplitsPerVar=1; % since binary attributes
args.numVarsPerNode=300; % pretty much guaranteed to give optimal results
case {'fsRFwoPrior'} % plain random forest using pre-trained attributes as "classeme"-like features
args=params.Dep.RF_train_args;
args.numSplitsPerVar=1; % since binary attributes
args.srcDsWt=0;
Xtr=[];
for i=1:length(testClasses)
Ytr{i}=[];
end
fewShots=true;
case {'zsRF','fsRF'}
args=params.Dep.RF_train_args;
args.numbins=2; % meaningless otherwise
args.numSplitsPerVar=1; % since binary attributes
if strcmp(methodName,'fsRF')
fewShots=true;
end
case {'zsRFwSampling','fsRFwSampling'}
args=params.Dep.RF_train_args;
args.numSplitsPerVar=1; % since binary attributes
args.samplingProb=[val_featRes.AUC];
args.numbins=2;
if strcmp(methodName,'fsRFwSampling')
fewShots=true;
end
case {'zsRFwCK','fsRFwCK'}
args=params.Dep.RF_train_args;
args.numSplitsPerVar=1; % since binary attributes
tpr=[val_featRes.TPR];
fpr=[val_featRes.FPR];
tpr(isnan(tpr))=0.5;
fpr(isnan(fpr))=0.5;
for attrno=1:numAttr
args.classifierKnowledge{attrno}=[0,0,0; fpr(attrno), tpr(attrno),0.5;fpr(attrno),tpr(attrno),1];
end
if strcmp(methodName,'fsRFwCK')
fewShots=true;
end
case {'zsRFwValProp','fsRFwValProp'}
args=params.Dep.RF_train_args;
args.numSplitsPerVar=1; % since binary attributes
args.valProp=true;
args.valData.X=attrConf(valInd,basicConcepts);
args.valData.annot=conceptmatrix(valInd,basicConcepts);
if strcmp(methodName,'fsRFwValProp')
fewShots=true;
end
case {'zsRFwCKnROC','fsRFwCKnROC'}
args=params.Dep.RF_train_args;
args.ROC=true;
%args.classifierKnowledge=[0*ones(numAttr,1) 1*ones(numAttr,1)];% perfect classifiers
%args.classifierKnowledge=[0.5*ones(numAttr,1) 0.5*ones(numAttr,1)];% random classifiers
%args.classifierKnowledge=[0.2*ones(numAttr,1) 0.8*ones(numAttr,1)];% with some uncertainty - great results in terms of AP and AUC, but F-score drops. (BUG)
for attrno=1:numAttr
fprintf('Extracting classifier knowledge for attrno %d\n', attrno);
try
[tmp1, tmp2, tmp3]=perfcurve(conceptmatrix(valInd,attrno), attrConf(valInd,attrno), 1, 'xCrit', 'FPR', 'yCrit', 'TPR');
catch err
if strcmp(err.identifier,'stats:perfcurve:NotEnoughClasses')
args.classifierKnowledge{attrno}=[0 1 1];
else
rethrow(err);
end
end
args.classifierKnowledge{attrno}=[tmp1 tmp2 tmp3];
end
clear('tmp1','tmp2','tmp3');
%tpr(isnan(tpr))=0.5;
%fpr(isnan(fpr))=0.5;
%args.classifierKnowledge=abort;
if strcmp(methodName,'fsRFwCKnROC')
fewShots=true;
end
case {'zsRFwValPropnROC','fsRFwValPropnROC'}
args=params.Dep.RF_train_args;
args.valProp=true;
args.ROC=true;
args.valData.X=attrConf(valInd,basicConcepts);
args.valData.annot=conceptmatrix(valInd,basicConcepts);
%args.valData.annot=attr_perimage(valInd,basicConcepts); % should get instance level labels
%args.valData.annot=attr_perclass(valInd,basicConcepts); % should get instance level labels
if strcmp(methodName,'fsRFwValPropnROC')
fewShots=true;
end
case {'zsRFwValPropnROC_noUncert','fsRFwValPropnROC_noUncert'}
args=params.Dep.RF_train_args;
args.valProp=true;
args.ROC=true;
args.noUncert=true;
args.valData.annot=conceptmatrix(testingInd,basicConcepts);
args.valData.X=attrConf(valInd,basicConcepts);
%args.valData.annot=attr_perclass(valInd,basicConcepts); % should get class level labels
if strcmp(methodName,'fsRFwValPropnROC')
fewShots=true;
end
otherwise
error('Unknown methodName');
end
% Training decision trees with Xtr and clsVec
zsRes(length(testClasses))=binClassRes;
if ~isfield(args, 'noUncert')
args.noUncert=false;
end
if args.noUncert
Xtr=Xtr_old; % return to state before flipping
end
if fewShots, Xtr={attrConf(fsInd, basicConcepts), Xtr}; end
if ~isfield(args, 'ROC')
args.ROC=false;
end
if params.repeatable, rng(3562462); end
for i=1:length(testClasses)
fprintf('Learning %s (%d/%d)\n', classnames{testClasses(i)}, i, length(testClasses));
if fewShots
Ytr{i}={double(classes(fsInd)==testClasses(i)), Ytr{i}};
end
zsModel(i)=forestTrain(Xtr, Ytr{i}, args);
if args.ROC
Xts=attrConf(testingInd,basicConcepts);
else
Xts=attrPred(testingInd,basicConcepts);
end
YtsMat=double(classes(testingInd)==testClasses(i));
zsRes(i) = classifyData(zsModel(i), data(Xts,YtsMat), 1, @forestTest_wrap);
end
rng('shuffle');
fprintf('\tMean AP: %f\n', mean([zsRes.AP]));
fprintf('\tMean AUC: %f\n', mean([zsRes.AUC]));
fprintf('\tMean Fscore: %f\n', mean([zsRes.Fscore]));
eval(sprintf('%sModel=zsModel;%sRes=zsRes;', methodName, methodName));
% accounting for label exclusivity
methodNameX=[methodName '_X'];
params.selMethodNames=union(params.selMethodNames, methodNameX);
% evaluate with the mutual exclusivity constraint accounted for (similar to DAP)
Confidence= cell2mat(arrayfun(@(x) x.conf, zsRes, 'UniformOutput', false));
% normalize rows of Confidence matrix
rowsum = sum(Confidence,2);
Confidence = bsxfun(@rdivide, Confidence, rowsum);
[~,~,newClsVec]=unique(classes(testingInd));
[zsxRes, zsxMultiRes] =evalmultiPreds(Confidence, newClsVec);
fprintf('After including exclusivity constraint:\n ===== \n');
fprintf('\tMean AP: %f\n', mean([zsxRes.AP]));
fprintf('\tMean AUC: %f\n', mean([zsxRes.AUC]));
fprintf('\tMean Fscore: %f\n', mean([zsxRes.Fscore]));
fprintf('\tOverall accuracy: %f\n', zsxMultiRes.overallAcc);
eval(sprintf('%s_XRes=zsxRes;', methodName, methodName));
eval(sprintf('%s_XMultiRes=zsxMultiRes;', methodName, methodName));
eval(sprintf('%sMultiRes=zsxMultiRes;', methodName, methodName)); % multiRes is the same for both methods
clear('zsModel','zsRes', 'zsxRes', 'zsxMultiRes');
if params.saveCP
varList={sprintf('%sRes', methodName), sprintf('%sMultiRes', methodName), sprintf('%sModel', methodName)};
varList=union(varList, {sprintf('%s_XRes', methodName), sprintf('%s_XMultiRes', methodName)});
if exist(matfilename)
varList{length(varList)+1}='-append';
end
makeLine(sprintf('Saving to %s', matfilename),'|',100);
save(matfilename, varList{:});
end
rng('shuffle');
end
end
end
%% Presenting results
allMethodNames={params.selMethodNames{:}};
%allMethodNames={params.selMethodNames{:}};
tmp=strcat(allMethodNames, 'Res''');
allRes=eval(['[' sprintf('%s ', tmp{:}) ']']);
tmp=strcat(allMethodNames, 'MultiRes''');
allMultiRes=eval(['[' sprintf('%s ', tmp{:}) ']']);
testClasses=unique(classes(testingInd));
APfig=drawFigure();
set(APfig, 'Position', [2619 145 812 800]);
suptitle(sprintf('Zero-shot object recognition'));
perfMats={};
for i=1:length(params.perfMeasure)
subplot(length(params.perfMeasure),1,i);
perfMeasure=params.perfMeasure{i};
title(perfMeasure);
switch perfMeasure
case {'AP','AUC','Fscore'}
scores=arrayfun(@(x) eval(sprintf('x.%s', perfMeasure)), allRes);
xlabels=classnames(testClasses);
case {'overallAcc'}
scores=arrayfun(@(x) eval(sprintf('x.%s', perfMeasure)), allMultiRes);
if isrow(scores), scores=scores'; end
scores=[scores NaN(size(scores,1),1)]';
xlabels={'Overall'};
otherwise
error('Unknown performance measure');
end
bar(scores);
try
xlim([0.5,length(xlabels)+0.5]);
set(gca,'XTick', 1:length(xlabels),'XTickLabel', xlabels);
rotateXLabels(gca, 90);
catch err
getReport(err)
end
ylabel(perfMeasure);
LEG=strcat(allMethodNames', ':', cellstr(num2str(nanmean(scores,1)')));
legend(LEG{:}, 'Location', 'NorthEastOutside');
eval(sprintf('%sMat=scores'';', perfMeasure));
perfMats{end+1}=sprintf('%sMat', perfMeasure);
end
% % precision-recall curves
% testClasses=unique(classes(testingInd));
% yaxis=arrayfun(@(x) eval(sprintf('x.misc.%s', 'prec')), allRes, 'UniformOutput', false); % stores in a cell array
% xaxis=arrayfun(@(x) eval(sprintf('x.misc.%s', 'reca')), allRes, 'UniformOutput', false); % stores in a cell array
% ap_mat=arrayfun(@(x) eval(sprintf('x.%s', 'AP')), allRes);
% cc=hsv(size(yaxis,2)); % as many colors as there are methods
% for i=1:size(yaxis,1) % length(testClasses)
% figure,
% for j=1:size(yaxis,2) % number of methods
% plot(xaxis{i,j},yaxis{i,j},'color',cc(j,:)); hold on;
% end
% LEG=strcat(allMethodNames', ':', cellstr(num2str(ap_mat(i,:)')));
% legend(LEG{:}, 'Location', 'NorthEastOutside');
% title(sprintf('Class:%s',classnames{testClasses(i)}));
% %pause
% end
% save final matfile
if params.saveCP
matfilename=sprintf('%s/%s_set%d_%d_%d%s.mat', params.OPfolder, params.filenameHeader, params.subSplitNo, params.cluster, params.process, repmat('(new)',1,params.numNews));
save(matfilename);
end
%results alone (to allow to generate plots without storing *everything*)
matfilename=sprintf('%s/res/RES_%s_set%d_%d_%d%s.mat', params.OPfolder, params.filenameHeader, params.subSplitNo, params.cluster, params.process, repmat('(new)',1,params.numNews));
fprintf('Saving result variables to %s\n', matfilename);
save(matfilename, perfMats{:}, 'perfMats', 'params');
fprintf('Finished\n');
catch err
getReport(err)
end
end
function params=parseArgs(args)
params.flipFrac=0;
params.startCP=0;
params.figSave=true;
params.figFormat='.png';
params.OPfolder=pwd;
params.titleFieldNames={'RFsplitsPerVar', 'RFvarsPerNode', 'RFdepth', 'RFtrees', 'RFleafFrac',};
params.discoverStages=true; % can be disabled to only use one stage
params.useConf=true;
params.perfMeasure={'AP','AUC','Fscore','overallAcc'};
params.overWrite=true;
params.numNews=0;
params.numSelComp=25; % number of composites selected per round
defaultFileNameHeader=true;
%params.selMethodNames={'feat','RF_DNF','RF_plain'};
params.selMethodNames={'zsRF', 'zsRFwValPropnROC'};
params.kernel='linear';
params.contClsAttMat=false;
params.pretrain_data='';
params.moreData=+1;
params.trackTrainPerf=true;
params.RFpriorMethod='varSel';
params.repeatable=true;
params.variableSelection=true;
params.perclassAttr=false;
params.cluster=0;
params.process=0;
% default values for some dependent parameters
params.Dep.selectedMethods=true;
% parameters that can either be set or left to other parameter-dependent values
defaultSaveCP=true;
% default values of all list parameters - also used in matching parameters across matfiles
params.List.RFdepth=7;
params.List.RFtrees=10;
params.List.RFvarsPerNode=5;
params.List.RFsplitsPerVar=5;
params.List.RFpriorFrac=1;
params.List.RFleafFrac=0.05;
%params.List.treeClassifier=1;
%params.List.classifierCommitFirst=true;
params.List.svm_c=10^(-4.5); % optimal for AwA_PCA
%params.List.svm_c=1e-5; % optimal for SUN
params.List.svm_d=3;
params.List.svm_g=1/500;
params.List.svm_r=0;
params.List.PCA=1;
params.List.TrnTstSplit=3;
params.List.valFrac=0.1;
params.List.srcDsWt=0;
params.List.numbins=2;
defaultTrnTstSplit=true;
params.List.combineGens=false;
params.List.subSplitNo=2; % allowing the same classes to exist in both training and test data, relevant only to AwA
params.List.addClasses=true;
params.List.allTrain=1;% using all seen class data as training data by default i.e. reserving data
params.List.numShots=0; % over all classes
numarg = length(args);
if numarg>=2
for i=1:2:numarg
switch args{i}
case 'perclassAttr'
params.perclassAttr=convert2num(args{i+1});
case 'contClsAttMat'
params.contClsAttMat=convert2num(args{i+1});
case 'selMethodNames'
params.Dep.selectedMethods=true;
%defaultSelMethodNames=false;
params.selMethodNames=args{i+1};%to load a cell array of strings
if ~iscell(params.selMethodNames)
params.selMethodNames={params.selMethodNames};
end
if ismember('all', params.selMethodNames)
params.Dep.selectedMethods=false;
%defaultSelMethodNames=true;
end
case 'trackTrainPerf'
params.trackTrainPerf=convert2num(args{i+1});
case 'saveCP'
params.saveCP=convert2num(args{i+1});
defaultSaveCP=false;
case 'pretrain_data'
params.pretrain_data=args{i+1};
case 'repeatable' % splits are always repeatable. Only the randomized methods such as RFs are controlled by this parameter
params.repeatable=convert2num(args{i+1});
case 'titleFieldNames'
params.titleFieldNames=args{i+1};%to load a cell array of strings
case 'figFormat'
params.figSave=true;
params.figFormat=args{i+1};
case 'figSave'
params.figSave=convert2num(args{i+1});
case 'OPfolder'
params.OPfolder=args{i+1};
case 'useConf'
params.useConf=convert2num(args{i+1});
case 'overWrite'
params.overWrite=convert2num(args{i+1});
case 'numSelComp'
params.numSelComp=convert2num(args{i+1});
case 'numNews'
params.numNews=convert2num(args{i+1});
case 'discoverStages'
params.discoverStages=convert2num(args{i+1});
case 'filenameHeader'
params.filenameHeader=args{i+1};
if ~strcmpi(params.filenameHeader, 'default')
defaultFileNameHeader=false;
end
case 'kernel'
params.kernel=args{i+1};
case 'moreData'
params.moreData=convert2num(args{i+1});
case 'RFpriorMethod'
params.RFpriorMethod=args{i+1};
case 'variableSelection'
params.variableSelection=convert2num(args{i+1});
case 'perfMeasure'
params.perfMeasure=args{i+1};%to load a cell array of strings
% all "List" parameters (meant to be easily varied over a list through condor)
case {'PCA','PCAList'}
params.List.PCA=convert2num(args{i+1});
case {'clauseLength', 'clauseLengthList'}
params.List.clauseLength=convert2num(args{i+1});
case {'RFdepth', 'RFdepthList'}
params.List.RFdepth=convert2num(args{i+1});
case {'RFtrees', 'RFtreesList'}
params.List.RFtrees=convert2num(args{i+1});
case {'RFleafFrac'}
params.List.RFleafFrac=convert2num(args{i+1});
%case {'RFsplits', 'RFsplitsList'}
% params.List.RFsplits=convert2num(args{i+1});
case {'RFvarsPerNode', 'RFvarsPerNodeList'}
params.List.RFvarsPerNode=convert2num(args{i+1})
case {'RFsplitsPerVar', 'RFsplitsPerVarList'}
params.List.RFsplitsPerVar=convert2num(args{i+1});
case {'RFpriorFrac', 'RFpriorFracList'}
params.List.RFpriorFrac=convert2num(args{i+1});
case {'svm_c', 'svm_cList'}
params.List.svm_c=convert2num(args{i+1});
case {'svm_d', 'svm_dList'}
params.List.svm_d=convert2num(args{i+1});
case {'svm_g', 'svm_gList'}
params.List.svm_g=convert2num(args{i+1});
case {'svm_r', 'svm_rList'}
params.List.svm_r=convert2num(args{i+1});
case {'addComposites', 'addCompositesList'}
params.List.addComposites=convert2num(args{i+1});
case {'combineGens', 'combineGensList'}
params.List.combineGens=convert2num(args{i+1});
case {'addClasses', 'addClassesList'}
params.List.addClasses=convert2num(args{i+1});
case 'TrnTstSplit'
params.List.TrnTstSplit=convert2num(args{i+1});
defaultTrnTstSplit=false;
case 'valFrac'
params.List.valFrac=convert2num(args{i+1});
case {'subSplitNo', 'subSplitNoList'} % relevant only to AwA
params.List.subSplitNo=convert2num(args{i+1});
case {'numRevisions', 'numRevisionsList'}
params.List.numRevisions=convert2num(args{i+1});
case {'allTrain', 'allTrainList'}
params.List.allTrain=convert2num(args{i+1});
case 'flipFrac'
params.List.flipFrac=convert2num(args{i+1});
case 'srcDsWt' % weights on each dataset (for the RF_adapt method)
params.List.srcDsWt=convert2num(args{i+1});
case 'numbins'
params.List.numbins=convert2num(args{i+1});
case 'numShots' % weights on each dataset (for the RF_adapt method)
params.List.numShots=convert2num(args{i+1});
otherwise
error(sprintf('invalid parameter name %s', args{i}));
end
end
end
mkdir(params.OPfolder);
mkdir([params.OPfolder '/res/']);
% selecting item from list
fprintf('\nCombinations');
paramNames=fieldnames(params.List);
for i = 1:length(paramNames)
tmp{i}=eval(sprintf('params.List.%s',paramNames{i}));
end
combinations = allcomb(tmp{:});
disp([(1:size(combinations,1))' combinations]);
fprintf('\n Selecting parameter combination #');
params.Dep.index = params.process;
fprintf('%d(+1) of %d\n\n', params.Dep.index, size(combinations,1));
assert(params.Dep.index+1<=size(combinations,1) && params.Dep.index>=0);
for i=1:length(paramNames)
eval(sprintf('params.%s=combinations(params.Dep.index+1,%d);', paramNames{i}, i));
end
params.Dep.RF_train_args=struct(...
'depth', params.RFdepth,...
'numTrees', params.RFtrees,...
'leafFrac', params.RFleafFrac,...
'numVarsPerNode', params.RFvarsPerNode,...
'numSplitsPerVar', params.RFsplitsPerVar,...
'priorFrac', params.RFpriorFrac,...
'priorMethod', params.RFpriorMethod,...
'select', ~params.variableSelection,...
'classifierID', 1,...
'classifierCommitFirst', true, ...
'dsWts', [1-params.srcDsWt, params.srcDsWt],...
'numbins', params.numbins...
);
if defaultSaveCP
params.saveCP=true;
end
if defaultFileNameHeader
%params.filenameHeader=sprintf('%s(%s_TrTs%d_subSpl%d_allTr%d_moreData%d)',mfilename, params.Dep.datasetName, params.TrnTstSplit, params.subSplitNo,params.allTrain,params.moreData);
params.filenameHeader='trial';
end
end
function arg = convert2num(arg)
arg=arg;
end