-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdenseExtraction.py
executable file
·133 lines (113 loc) · 5.1 KB
/
denseExtraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#!/usr/bin/env python
"""Change the paths accordingly to extract your npy files from cityscapes
dataset in order to train the models
"""
from __future__ import print_function
import time
import numpy as np
import os
from skimage import io
import re
# How many images you want to cut into patches
# set to None to extract all of them
trainImageSet = None
valImageSet = None
testImageSet = None
offset = 500 # how many samples per file
patchSize = 512
img_rows, img_cols = 512, 512
rawImagePattern = 'leftImg8bit.png'
finePattern = 'gtFine_labelTrainIds.png'
#####################################################
# Configure paths for leftImg8bit image set
#####################################################
outTrainImgPath = '/media/dimitris/TOSHIBA EXT/UTH/Thesis/Cityscapes_dataset/leftImg8bit/dense_train_set_{}/'.format(patchSize)
outValImgPath = '/media/dimitris/TOSHIBA EXT/UTH/Thesis/Cityscapes_dataset/leftImg8bit/dense_validation_set_{}/'.format(patchSize)
outTestImgPath = '/media/dimitris/TOSHIBA EXT/UTH/Thesis/Cityscapes_dataset/leftImg8bit/dense_test_set_{}/'.format(patchSize)
# Train set Path
trainImagePath = '/media/dimitris/TOSHIBA EXT/UTH/Thesis/Cityscapes_dataset/leftImg8bit/resized_train'
# Validation set Path
valImagePath = '/media/dimitris/TOSHIBA EXT/UTH/Thesis/Cityscapes_dataset/leftImg8bit/resized_validation'
# Test set Path
testImagePath = '/media/dimitris/TOSHIBA EXT/UTH/Thesis/Cityscapes_dataset/leftImg8bit/resized_test'
######################################################
# Configure paths for gtFine labeled image set
######################################################
trainFinePath = '/media/dimitris/TOSHIBA EXT/UTH/Thesis/Cityscapes_dataset/gtFine/resized_train'
valFinePath = '/media/dimitris/TOSHIBA EXT/UTH/Thesis/Cityscapes_dataset/gtFine/resized_validation'
testFinePath = '/media/dimitris/TOSHIBA EXT/UTH/Thesis/Cityscapes_dataset/gtFine/resized_test'
#############################################
# Extracts the patches from the image and
# saves to path(Dense pixel extraction)
#############################################
def denseExtractor(imageSet, imagepath, finepath, outpath, filePattern, mode):
counter = 0
index = 0
skip = 0 # skip the first # images
skipIndex = 0 #Keep index of the skipped images
fileIndex = 1
x_Handler = open(outpath+filePattern[0]+str(patchSize)+'_'+'%04d.npz'%(fileIndex), 'wb')
y_Handler = open(outpath+filePattern[1]+str(patchSize)+'_'+'%04d.npz'%(fileIndex), 'wb')
imArray = np.array([])
yLabels = np.array([])
for file in sorted(os.listdir(imagepath)):
if skipIndex < skip:
skipIndex +=1
continue
print(counter)
image = io.imread(os.path.join(imagepath, file))
h, w, c = image.shape
# load the annoated image
labelImage = io.imread(os.path.join(finepath, re.findall('\w+_\d+_\d+_', file)[0]+finePattern))
im = np.array(image)
imLabels = np.array(labelImage)
imLabels = np.clip(imLabels, 0, 19)
# 2nd Try
if imArray.size == patchSize*patchSize*c:
imArray = np.stack((imArray, im), axis=0)
yLabels = np.append(yLabels, imLabels)
elif imArray.size == 0:
imArray = im
yLabels = np.append(yLabels, imLabels)
else:
imArray = np.insert(imArray, index, im, axis=0)
yLabels = np.append(yLabels, imLabels)
counter += 1
if index == offset-1:
np.save(x_Handler, imArray)
np.save(y_Handler, yLabels)
fileIndex += 1
x_Handler.close()
y_Handler.close()
# Reset the arrays for refill
imArray = np.array([])
yLabels = np.array([])
x_Handler = open(outpath+filePattern[0]+str(patchSize)+'_'+'%04d.npz'%(fileIndex), 'wb')
y_Handler = open(outpath+filePattern[1]+str(patchSize)+'_'+'%04d.npz'%(fileIndex), 'wb')
index = 0
print(outpath+filePattern[0])
print('{} Saved...'.format(fileIndex))
continue
index += 1
# Check if the file handlers are closed with the residual samples
if not x_Handler.closed and not y_Handler.closed:
np.save(x_Handler, imArray)
np.save(y_Handler, yLabels)
x_Handler.close()
y_Handler.close()
imArray = np.array([])
yLabels = np.array([])
def main():
print('Train...')
filePattern = ['X_train_set_', 'Y_train_set_']
denseExtractor(trainImageSet, trainImagePath, trainFinePath, outTrainImgPath, filePattern, mode)
print('Validation...')
filePattern = ['X_validation_set_', 'Y_validation_set_']
denseExtractor(valImageSet, valImagePath, valFinePath, outValImgPath, filePattern, mode)
print('Test...')
filePattern = ['X_test_set_', 'Y_test_set_']
denseExtractor(testImageSet, testImagePath, testFinePath, outTestImgPath, filePattern, mode)
if __name__ == '__main__':
start_time = time.time()
main()
print('----- %s seconds -----'%(time.time()-start_time))