forked from biomimetics/imageproc-lib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbams.c
401 lines (335 loc) · 16.7 KB
/
bams.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
/*
* Copyright (c) 2009 - 2010, Regents of the University of California
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the University of California, Berkeley nor the names
* of its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
* Binary Angle Measurement System (BAMS) Implementation
*
* by Humphrey Hu
*
* v.alpha
*
* Revisions:
* Humphrey Hu 2011-10-23 Initial implementation
*
*/
#include "bams.h"
#include "math.h"
// Conversion constants
#define BAMS16_TO_RAD (9.58737992e-5)
#define BAMS16_TO_DEG (5.49316406e-3)
#define BAMS32_TO_RAD (1.46291808e-9)
#define BAMS32_TO_DEG (8.38190317e-8)
#define RAD_TO_BAMS16 (10430.3784)
#define DEG_TO_BAMS16 (182.044444)
#define DEG_TO_BAMS32 (11930464.7)
#define RAD_TO_BAMS32 (683565276.0)
#define BAMS16_LSB2RAD (9.58737992e-5)
#define BAMS32_LSB2RAD (1.46291808e-9)
// Other constants
#define _2PI (6.28318531)
#define PI (3.14159265)
#define PI_4 (0.785398163
float bams16ToFloatRad(bams16_t b) {
return b*BAMS16_TO_RAD;
}
float bams16ToFloatDeg(bams16_t b) {
return b*BAMS16_TO_DEG;
}
bams16_t floatToBams16Rad(float f) {
return (bams16_t) (((f > PI) ? (f - _2PI) : f)*RAD_TO_BAMS16);
}
bams16_t floatToBams16Deg(float f) {
return (bams16_t) (((f > 180.0) ? (f - 360.0) : f)*DEG_TO_BAMS16);
}
float bams32ToFloatRad(bams32_t b) {
return b*BAMS32_TO_RAD;
}
float bams32ToFloatDeg(bams32_t b) {
return b*BAMS32_TO_DEG;
}
bams32_t floatToBams32Rad(float f) {
return (bams32_t) (((f > PI) ? (f - _2PI) : f)*RAD_TO_BAMS32);
}
bams32_t floatToBams32Deg(float f) {
return (bams32_t) (((f > 180.0) ? (f - 360.0) : f)*DEG_TO_BAMS32);
}
bams16_t bams32ToBams16(bams32_t b) {
return (bams16_t) (b & 0x0080) ? (b >> 16) + 1 : b >> 16;
}
bams32_t bams16ToBams32(bams16_t b) {
return (bams32_t) b << 16;
}
// Need 2^i + 1 values to cover 0 and pi/4, where i is # index bits
// We shift over 6 bits to get 10 significant bits, which we then use symmetry to
// further segment by 4, bringing us to 8 index bits (2^8 + 1 = 257)
#define SIN_TABLE_SIZE (257)
#define SIN_SIGBITS_SHIFT (6) // Right shift amount to get significant bits
#define SIN_SIGBITS16_UPPER_MASK (0xFFC0) // Top 10 bits
#define SIN_SIGBITS16_LOWER_MASK (0x003F) // Bottom 6 bits
#define SIN_SIGBITS32_UPPER_MASK (0xFFC00000)// Top 10 bits
#define SIN_SIGBITS32_LOWER_MASK (0x003FFFFF)// Bottom 22 bits
#define SIN_FINE_STEP16 (0.015625)
#define SIN_FINE_STEP32 (2.38418579E-7)
const float sin_table[] = {
0.0, 0.00613588464915, 0.0122715382857, 0.0184067299058, 0.0245412285229, 0.0306748031766, 0.0368072229414, 0.0429382569349, 0.0490676743274, 0.0551952443497,
0.0613207363022, 0.0674439195637, 0.0735645635997, 0.0796824379714, 0.0857973123444, 0.0919089564971, 0.0980171403296, 0.104121633872, 0.110222207294, 0.116318630912,
0.122410675199, 0.128498110794, 0.134580708507, 0.140658239333, 0.146730474455, 0.152797185258, 0.158858143334, 0.16491312049, 0.17096188876, 0.177004220412,
0.183039887955, 0.18906866415, 0.195090322016, 0.201104634842, 0.207111376192, 0.213110319916, 0.219101240157, 0.22508391136, 0.231058108281, 0.237023605994,
0.242980179903, 0.248927605746, 0.254865659605, 0.260794117915, 0.266712757475, 0.27262135545, 0.278519689385, 0.284407537211, 0.290284677254, 0.296150888244,
0.302005949319, 0.307849640042, 0.313681740399, 0.319502030816, 0.325310292162, 0.33110630576, 0.336889853392, 0.342660717312, 0.348418680249, 0.35416352542,
0.359895036535, 0.365612997805, 0.371317193952, 0.377007410216, 0.382683432365, 0.388345046699, 0.393992040061, 0.399624199846, 0.405241314005, 0.410843171058,
0.416429560098, 0.4220002708, 0.42755509343, 0.433093818853, 0.438616238539, 0.44412214457, 0.449611329655, 0.455083587126, 0.460538710958, 0.465976495768,
0.471396736826, 0.476799230063, 0.482183772079, 0.487550160148, 0.49289819223, 0.498227666973, 0.503538383726, 0.508830142543, 0.514102744193, 0.519355990166,
0.524589682678, 0.529803624686, 0.534997619887, 0.54017147273, 0.545324988422, 0.550457972937, 0.55557023302, 0.560661576197, 0.565731810784, 0.570780745887,
0.575808191418, 0.580813958096, 0.585797857456, 0.590759701859, 0.595699304492, 0.600616479384, 0.605511041404, 0.610382806276, 0.615231590581, 0.620057211763,
0.624859488142, 0.629638238915, 0.634393284164, 0.639124444864, 0.64383154289, 0.648514401022, 0.653172842954, 0.657806693297, 0.66241577759, 0.666999922304,
0.671558954847, 0.676092703575, 0.680600997795, 0.685083667773, 0.689540544737, 0.69397146089, 0.698376249409, 0.702754744457, 0.707106781187, 0.711432195745,
0.715730825284, 0.720002507961, 0.724247082951, 0.728464390448, 0.732654271672, 0.736816568877, 0.740951125355, 0.745057785441, 0.749136394523, 0.753186799044,
0.757208846506, 0.761202385484, 0.765167265622, 0.769103337646, 0.773010453363, 0.776888465673, 0.780737228572, 0.784556597156, 0.788346427627, 0.7921065773,
0.795836904609, 0.799537269108, 0.803207531481, 0.806847553544, 0.810457198253, 0.814036329706, 0.817584813152, 0.821102514991, 0.824589302785, 0.828045045258,
0.831469612303, 0.834862874986, 0.838224705555, 0.841554977437, 0.84485356525, 0.848120344803, 0.851355193105, 0.854557988365, 0.85772861, 0.860866938638,
0.863972856122, 0.867046245516, 0.870086991109, 0.873094978418, 0.876070094195, 0.879012226429, 0.881921264348, 0.884797098431, 0.887639620403, 0.890448723245,
0.893224301196, 0.895966249756, 0.898674465694, 0.901348847046, 0.903989293123, 0.906595704515, 0.909167983091, 0.911706032005, 0.914209755704, 0.916679059921,
0.91911385169, 0.921514039342, 0.923879532511, 0.926210242138, 0.928506080473, 0.930766961079, 0.932992798835, 0.935183509939, 0.937339011913, 0.939459223602,
0.941544065183, 0.943593458162, 0.945607325381, 0.947585591018, 0.949528180593, 0.951435020969, 0.953306040354, 0.955141168306, 0.956940335732, 0.958703474896,
0.960430519416, 0.962121404269, 0.963776065795, 0.965394441698, 0.966976471045, 0.968522094274, 0.970031253195, 0.971503890986, 0.972939952206, 0.974339382786,
0.975702130039, 0.977028142658, 0.97831737072, 0.979569765685, 0.980785280403, 0.98196386911, 0.983105487431, 0.984210092387, 0.985277642389, 0.986308097245,
0.987301418158, 0.988257567731, 0.989176509965, 0.990058210262, 0.990902635428, 0.991709753669, 0.992479534599, 0.993211949235, 0.993906970002, 0.994564570734,
0.995184726672, 0.995767414468, 0.996312612183, 0.996820299291, 0.997290456679, 0.997723066644, 0.9981181129, 0.998475580573, 0.998795456205, 0.999077727753,
0.999322384588, 0.999529417501, 0.999698818696, 0.999830581796, 0.999924701839, 0.999981175283, 1.0, 0.999981175283
};
// Quick lookup implementation
// Runs full range at ~43 cycles
float bams16Sin(bams16_t b) {
if(b < 0) {
if(b < -BAMS16_PI_2) {
b = b - BAMS16_PI;
} else {
b = -b;
}
return -sin_table[(unsigned int) b >> SIN_SIGBITS_SHIFT];
} else {
if(b > BAMS16_PI_2) {
b = BAMS16_PI - b;
} else {
// b = b;
}
return sin_table[(unsigned int) b >> SIN_SIGBITS_SHIFT];
}
}
float bams16Cos(bams16_t b) {
// cos(x) = sin(x + pi/2)
return bams16Sin(b + BAMS16_PI_2);
}
// High precision implementation
// Runs full range at ~370 cycles
float bams16SinFine(bams16_t b) {
float v0, v1, r;
v0 = bams16Sin(b & SIN_SIGBITS16_UPPER_MASK);
v1 = bams16Sin((b & SIN_SIGBITS16_UPPER_MASK) + SIN_SIGBITS16_LOWER_MASK + 1);
r = (b & SIN_SIGBITS16_LOWER_MASK)*SIN_FINE_STEP16;
return v0 + (v1 - v0)*r;
}
// High precision implementation
// ~370 cycles
float bams16CosFine(bams16_t b) {
return bams16SinFine(b + BAMS16_PI_2);
}
float bams16Tan(bams16_t b) {
return bams16Sin(b)/bams16Cos(b);
}
float bams16TanFine(bams16_t b) {
return bams16SinFine(b)/bams16CosFine(b);
}
float bams32Sin(bams32_t b) {
return bams16Sin(bams32ToBams16(b));
}
float bams32Cos(bams32_t b) {
return bams16Cos(bams32ToBams16(b));
}
float bams32SinFine(bams32_t b) {
float v0, v1, r;
v0 = bams32Sin(b & SIN_SIGBITS32_UPPER_MASK);
v1 = bams32Sin((b & SIN_SIGBITS32_UPPER_MASK) + SIN_SIGBITS32_LOWER_MASK + 1);
r = (b & SIN_SIGBITS32_LOWER_MASK)*SIN_FINE_STEP32;
return v0 + (v1 - v0)*r;
}
float bams32CosFine(bams32_t b) {
return bams32SinFine(b + BAMS32_PI_2);
}
float bams32Tan(bams32_t b) {
return bams32Sin(b)/bams32Cos(b);
}
float bams32TanFine(bams32_t b) {
return bams32SinFine(b)/bams32CosFine(b);
}
#define ASIN_TABLE_NUM (256) // +1 extra value for linear interpolation
#define ASIN_STEP (255.0)
const bams16_t bams_asin_table[] = {
0x0, 0x28, 0x51, 0x7a, 0xa3, 0xcc, 0xf5, 0x11e, 0x147, 0x170,
0x199, 0x1c2, 0x1eb, 0x213, 0x23c, 0x265, 0x28e, 0x2b7, 0x2e0, 0x309,
0x332, 0x35b, 0x384, 0x3ae, 0x3d7, 0x400, 0x429, 0x452, 0x47b, 0x4a4,
0x4cd, 0x4f7, 0x520, 0x549, 0x572, 0x59c, 0x5c5, 0x5ee, 0x618, 0x641,
0x66a, 0x694, 0x6bd, 0x6e7, 0x710, 0x73a, 0x763, 0x78d, 0x7b7, 0x7e0,
0x80a, 0x834, 0x85e, 0x887, 0x8b1, 0x8db, 0x905, 0x92f, 0x959, 0x983,
0x9ad, 0x9d7, 0xa01, 0xa2b, 0xa56, 0xa80, 0xaaa, 0xad5, 0xaff, 0xb29,
0xb54, 0xb7f, 0xba9, 0xbd4, 0xbff, 0xc29, 0xc54, 0xc7f, 0xcaa, 0xcd5,
0xd00, 0xd2b, 0xd56, 0xd81, 0xdad, 0xdd8, 0xe04, 0xe2f, 0xe5b, 0xe86,
0xeb2, 0xede, 0xf09, 0xf35, 0xf61, 0xf8d, 0xfb9, 0xfe6, 0x1012, 0x103e,
0x106b, 0x1097, 0x10c4, 0x10f0, 0x111d, 0x114a, 0x1177, 0x11a4, 0x11d1, 0x11fe,
0x122c, 0x1259, 0x1286, 0x12b4, 0x12e2, 0x130f, 0x133d, 0x136b, 0x1399, 0x13c8,
0x13f6, 0x1424, 0x1453, 0x1482, 0x14b0, 0x14df, 0x150e, 0x153d, 0x156c, 0x159c,
0x15cb, 0x15fb, 0x162b, 0x165b, 0x168b, 0x16bb, 0x16eb, 0x171b, 0x174c, 0x177d,
0x17ae, 0x17df, 0x1810, 0x1841, 0x1873, 0x18a4, 0x18d6, 0x1908, 0x193a, 0x196c,
0x199f, 0x19d2, 0x1a04, 0x1a37, 0x1a6b, 0x1a9e, 0x1ad2, 0x1b06, 0x1b3a, 0x1b6e,
0x1ba2, 0x1bd7, 0x1c0c, 0x1c41, 0x1c76, 0x1cac, 0x1ce1, 0x1d17, 0x1d4e, 0x1d84,
0x1dbb, 0x1df2, 0x1e29, 0x1e61, 0x1e98, 0x1ed1, 0x1f09, 0x1f42, 0x1f7b, 0x1fb4,
0x1fed, 0x2027, 0x2062, 0x209c, 0x20d7, 0x2112, 0x214e, 0x218a, 0x21c6, 0x2203,
0x2240, 0x227e, 0x22bc, 0x22fa, 0x2339, 0x2378, 0x23b8, 0x23f8, 0x2439, 0x247a,
0x24bb, 0x24fe, 0x2540, 0x2584, 0x25c8, 0x260c, 0x2651, 0x2697, 0x26dd, 0x2724,
0x276c, 0x27b4, 0x27fe, 0x2848, 0x2892, 0x28de, 0x292b, 0x2978, 0x29c6, 0x2a16,
0x2a66, 0x2ab8, 0x2b0a, 0x2b5e, 0x2bb3, 0x2c09, 0x2c61, 0x2cba, 0x2d14, 0x2d70,
0x2dce, 0x2e2e, 0x2e8f, 0x2ef3, 0x2f59, 0x2fc1, 0x302c, 0x3099, 0x3109, 0x317d,
0x31f4, 0x326f, 0x32ef, 0x3373, 0x33fd, 0x348d, 0x3524, 0x35c4, 0x366e, 0x3724,
0x37eb, 0x38c6, 0x39be, 0x3ae4, 0x3c63, 0x4000, 0x3c63 // Extra value for linear interp bounds
};
// Standard precision implementation
// 330 cycles
bams16_t bams16Asin(float f) {
if(f >= 0.0) {
return bams_asin_table[(unsigned int) (f*ASIN_STEP)];
} else {
return -bams_asin_table[(unsigned int) (-f*ASIN_STEP)];
}
}
bams16_t bams16Acos(float f) {
if(f >= 0.0) {
return -bams_asin_table[(unsigned int) (f*ASIN_STEP)] + BAMS16_PI_2;
} else {
return bams_asin_table[(unsigned int) (-f*ASIN_STEP)] + BAMS16_PI_2;
}
}
// High precision implementation
// 1100 cycles
bams16_t bams16AsinFine(float f) {
float fract, pint;
unsigned int index;
bams16_t b1, b2, db;
if(f >= 0.0) {
fract = modff(f*ASIN_STEP, &pint);
index = (unsigned int) pint;
b1 = bams_asin_table[index];
b2 = bams_asin_table[index + 1];
db = (unsigned int) (fract*(b2 - b1));
return b1 + db;
} else {
fract = modff(-f*ASIN_STEP, &pint);
index = (unsigned int) pint;
b1 = bams_asin_table[index];
b2 = bams_asin_table[index + 1];
db = (unsigned int) (fract*(b2 - b1));
return -(b1 + db);
}
}
bams16_t bams16AcosFine(float f) {
float fract, pint;
unsigned int index;
bams16_t b1, b2, db;
if(f >= 0.0) {
fract = modff(f*ASIN_STEP, &pint);
index = (unsigned int) pint;
b1 = bams_asin_table[index];
b2 = bams_asin_table[index + 1];
db = (unsigned int) (fract*(b2 - b1));
return -(b1 + db - BAMS16_PI_2);
} else {
fract = modff(-f*ASIN_STEP, &pint);
index = (unsigned int) pint;
b1 = bams_asin_table[index];
b2 = bams_asin_table[index + 1];
db = (unsigned int) (fract*(b2 - b1));
return b1 + db + BAMS16_PI_2;
}
}
#define ATAN_TABLE_NUM (256)
#define ATAN_STEP (255.0)
const bams16_t bams_atan_table[] = {
0x0, 0x28, 0x51, 0x7a, 0xa3, 0xcc, 0xf5, 0x11e, 0x147, 0x16f,
0x198, 0x1c1, 0x1ea, 0x213, 0x23c, 0x264, 0x28d, 0x2b6, 0x2df, 0x307,
0x330, 0x359, 0x381, 0x3aa, 0x3d2, 0x3fb, 0x423, 0x44c, 0x474, 0x49d,
0x4c5, 0x4ed, 0x516, 0x53e, 0x566, 0x58e, 0x5b6, 0x5de, 0x606, 0x62e,
0x656, 0x67e, 0x6a6, 0x6ce, 0x6f6, 0x71d, 0x745, 0x76d, 0x794, 0x7bc,
0x7e3, 0x80a, 0x832, 0x859, 0x880, 0x8a7, 0x8ce, 0x8f5, 0x91c, 0x943,
0x96a, 0x991, 0x9b7, 0x9de, 0xa04, 0xa2b, 0xa51, 0xa77, 0xa9e, 0xac4,
0xaea, 0xb10, 0xb36, 0xb5c, 0xb81, 0xba7, 0xbcd, 0xbf2, 0xc18, 0xc3d,
0xc62, 0xc88, 0xcad, 0xcd2, 0xcf7, 0xd1b, 0xd40, 0xd65, 0xd8a, 0xdae,
0xdd2, 0xdf7, 0xe1b, 0xe3f, 0xe63, 0xe87, 0xeab, 0xecf, 0xef3, 0xf16,
0xf3a, 0xf5d, 0xf80, 0xfa4, 0xfc7, 0xfea, 0x100d, 0x102f, 0x1052, 0x1075,
0x1097, 0x10ba, 0x10dc, 0x10fe, 0x1120, 0x1143, 0x1164, 0x1186, 0x11a8, 0x11ca,
0x11eb, 0x120d, 0x122e, 0x124f, 0x1270, 0x1291, 0x12b2, 0x12d3, 0x12f4, 0x1314,
0x1335, 0x1355, 0x1376, 0x1396, 0x13b6, 0x13d6, 0x13f6, 0x1416, 0x1435, 0x1455,
0x1474, 0x1494, 0x14b3, 0x14d2, 0x14f1, 0x1510, 0x152f, 0x154e, 0x156d, 0x158b,
0x15aa, 0x15c8, 0x15e6, 0x1604, 0x1622, 0x1640, 0x165e, 0x167c, 0x1699, 0x16b7,
0x16d4, 0x16f2, 0x170f, 0x172c, 0x1749, 0x1766, 0x1782, 0x179f, 0x17bc, 0x17d8,
0x17f5, 0x1811, 0x182d, 0x1849, 0x1865, 0x1881, 0x189d, 0x18b8, 0x18d4, 0x18ef,
0x190b, 0x1926, 0x1941, 0x195c, 0x1977, 0x1992, 0x19ad, 0x19c7, 0x19e2, 0x19fc,
0x1a17, 0x1a31, 0x1a4b, 0x1a65, 0x1a7f, 0x1a99, 0x1ab3, 0x1acc, 0x1ae6, 0x1aff,
0x1b19, 0x1b32, 0x1b4b, 0x1b64, 0x1b7d, 0x1b96, 0x1baf, 0x1bc8, 0x1be0, 0x1bf9,
0x1c11, 0x1c2a, 0x1c42, 0x1c5a, 0x1c72, 0x1c8a, 0x1ca2, 0x1cba, 0x1cd1, 0x1ce9,
0x1d00, 0x1d18, 0x1d2f, 0x1d46, 0x1d5d, 0x1d74, 0x1d8b, 0x1da2, 0x1db9, 0x1dd0,
0x1de6, 0x1dfd, 0x1e13, 0x1e2a, 0x1e40, 0x1e56, 0x1e6c, 0x1e82, 0x1e98, 0x1eae,
0x1ec4, 0x1ed9, 0x1eef, 0x1f04, 0x1f1a, 0x1f2f, 0x1f44, 0x1f59, 0x1f6e, 0x1f83,
0x1f98, 0x1fad, 0x1fc2, 0x1fd6, 0x1feb, 0x2000
};
// Standard implementation
// 1000 cycles
bams16_t bams16Atan2(float y, float x) {
float div;
unsigned char yneg, xneg, invert, temp;
bams16_t b;
yneg = y < 0.0;
xneg = x < 0.0;
y = (yneg) ? -y : y;
x = (xneg) ? -x : x;
// Add pi/2 to tan argument and flip the tan
// This lets us use a quarter table
if(y > x) {
div = x/y;
temp = yneg;
yneg = xneg;
xneg = temp;
invert = 1;
} else {
div = y/x;
invert = 0;
}
b = bams_atan_table[(unsigned int) (div*ATAN_STEP)];
b = (xneg) ? BAMS16_PI - b : b;
b = (yneg) ? -b : b;
return (invert) ? -b + BAMS16_PI_2 : b;
}