forked from liyaodev/image-retrieval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.py
42 lines (38 loc) · 1.61 KB
/
index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# -*- coding: utf-8 -*-
import h5py
import argparse
import numpy as np
from service.vggnet import VGGNet
import os
import sys
from os.path import dirname
BASE_DIR = dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
def get_imlist(path):
return [os.path.join(path,f) for f in os.listdir(path) if f.endswith('.jpg')]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--train_data", type=str, default=os.path.join(BASE_DIR, 'data', 'train'), help="train data path.")
parser.add_argument("--index_file", type=str, default=os.path.join(BASE_DIR, 'index', 'train.h5'), help="index file path.")
args = vars(parser.parse_args())
img_list = get_imlist(args["train_data"])
print("--------------------------------------------------")
print(" feature extraction starts")
print("--------------------------------------------------")
feats = []
names = []
model = VGGNet()
for i, img_path in enumerate(img_list):
norm_feat = model.vgg_extract_feat(img_path)
img_name = os.path.split(img_path)[1]
feats.append(norm_feat)
names.append(img_name)
print("extracting feature from image No. %d , %d images in total" %((i+1), len(img_list)))
feats = np.array(feats)
print("--------------------------------------------------")
print(" writing feature extraction results")
print("--------------------------------------------------")
h5f = h5py.File(args["index_file"], 'w')
h5f.create_dataset('dataset_1', data = feats)
h5f.create_dataset('dataset_2', data = np.string_(names))
h5f.close()