-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathlmstr1.c
167 lines (122 loc) · 5.82 KB
/
lmstr1.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#include "cminpack.h"
#include "cminpackP.h"
__cminpack_attr__
int __cminpack_func__(lmstr1)(__cminpack_decl_fcnderstr_mn__ void *p, int m, int n, real *x,
real *fvec, real *fjac, int ldfjac, real tol,
int *ipvt, real *wa, int lwa)
{
/* Initialized data */
const real factor = 100.;
/* Local variables */
int mode, nfev, njev;
real ftol, gtol, xtol;
int maxfev, nprint;
int info;
/* ********** */
/* subroutine lmstr1 */
/* the purpose of lmstr1 is to minimize the sum of the squares of */
/* m nonlinear functions in n variables by a modification of */
/* the levenberg-marquardt algorithm which uses minimal storage. */
/* this is done by using the more general least-squares solver */
/* lmstr. the user must provide a subroutine which calculates */
/* the functions and the rows of the jacobian. */
/* the subroutine statement is */
/* subroutine lmstr1(fcn,m,n,x,fvec,fjac,ldfjac,tol,info, */
/* ipvt,wa,lwa) */
/* where */
/* fcn is the name of the user-supplied subroutine which */
/* calculates the functions and the rows of the jacobian. */
/* fcn must be declared in an external statement in the */
/* user calling program, and should be written as follows. */
/* subroutine fcn(m,n,x,fvec,fjrow,iflag) */
/* integer m,n,iflag */
/* double precision x(n),fvec(m),fjrow(n) */
/* ---------- */
/* if iflag = 1 calculate the functions at x and */
/* return this vector in fvec. */
/* if iflag = i calculate the (i-1)-st row of the */
/* jacobian at x and return this vector in fjrow. */
/* ---------- */
/* return */
/* end */
/* the value of iflag should not be changed by fcn unless */
/* the user wants to terminate execution of lmstr1. */
/* in this case set iflag to a negative integer. */
/* m is a positive integer input variable set to the number */
/* of functions. */
/* n is a positive integer input variable set to the number */
/* of variables. n must not exceed m. */
/* x is an array of length n. on input x must contain */
/* an initial estimate of the solution vector. on output x */
/* contains the final estimate of the solution vector. */
/* fvec is an output array of length m which contains */
/* the functions evaluated at the output x. */
/* fjac is an output n by n array. the upper triangle of fjac */
/* contains an upper triangular matrix r such that */
/* t t t */
/* p *(jac *jac)*p = r *r, */
/* where p is a permutation matrix and jac is the final */
/* calculated jacobian. column j of p is column ipvt(j) */
/* (see below) of the identity matrix. the lower triangular */
/* part of fjac contains information generated during */
/* the computation of r. */
/* ldfjac is a positive integer input variable not less than n */
/* which specifies the leading dimension of the array fjac. */
/* tol is a nonnegative input variable. termination occurs */
/* when the algorithm estimates either that the relative */
/* error in the sum of squares is at most tol or that */
/* the relative error between x and the solution is at */
/* most tol. */
/* info is an integer output variable. if the user has */
/* terminated execution, info is set to the (negative) */
/* value of iflag. see description of fcn. otherwise, */
/* info is set as follows. */
/* info = 0 improper input parameters. */
/* info = 1 algorithm estimates that the relative error */
/* in the sum of squares is at most tol. */
/* info = 2 algorithm estimates that the relative error */
/* between x and the solution is at most tol. */
/* info = 3 conditions for info = 1 and info = 2 both hold. */
/* info = 4 fvec is orthogonal to the columns of the */
/* jacobian to machine precision. */
/* info = 5 number of calls to fcn with iflag = 1 has */
/* reached 100*(n+1). */
/* info = 6 tol is too small. no further reduction in */
/* the sum of squares is possible. */
/* info = 7 tol is too small. no further improvement in */
/* the approximate solution x is possible. */
/* ipvt is an integer output array of length n. ipvt */
/* defines a permutation matrix p such that jac*p = q*r, */
/* where jac is the final calculated jacobian, q is */
/* orthogonal (not stored), and r is upper triangular. */
/* column j of p is column ipvt(j) of the identity matrix. */
/* wa is a work array of length lwa. */
/* lwa is a positive integer input variable not less than 5*n+m. */
/* subprograms called */
/* user-supplied ...... fcn */
/* minpack-supplied ... lmstr */
/* argonne national laboratory. minpack project. march 1980. */
/* burton s. garbow, dudley v. goetschel, kenneth e. hillstrom, */
/* jorge j. more */
/* ********** */
/* check the input parameters for errors. */
if (n <= 0 || m < n || ldfjac < n || tol < 0. || lwa < n * 5 + m) {
return 0;
}
/* call lmstr. */
maxfev = (n + 1) * 100;
ftol = tol;
xtol = tol;
gtol = 0.;
mode = 1;
nprint = 0;
info = __cminpack_func__(lmstr)(__cminpack_param_fcnderstr_mn__ p, m, n, x, fvec, fjac, ldfjac,
ftol, xtol, gtol, maxfev, wa, mode, factor, nprint,
&nfev, &njev, ipvt, &wa[n], &wa[(n << 1)], &
wa[n * 3], &wa[(n << 2)], &wa[n * 5]);
if (info == 8) {
info = 4;
}
return info;
/* last card of subroutine lmstr1. */
} /* lmstr1_ */