-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexample.py
28 lines (21 loc) · 1020 Bytes
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch
import torch.nn as nn
import torch.nn.functional as F
#reference : https://github.com/joe-siyuan-qiao/WeightStandardization
class Conv3d(nn.Conv3d):
def __init__(self, in_channels, output_channels, kernel_size,
stride=1, padding=0, dilation=1, groups=1, bias=True):
super(Conv3d, self).__init__(in_channels, output_channels, kernel_size, stride, padding, dilation, groups, bias)
def forward(self, x):
w = self.weight
w_mean = w.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True).mean(dim=4, keepdim=True)
w = w - w_mean
std = w.view(w.size(0), -1).std(dim=1).view(-1,1,1,1,1) + 1e-5
w = w / std.expand_as(w)
return F.conv3d(x, w, self.bias, self.stride, self.padding, self.dilation, self.groups)
if __name__ == '__main__':
conv3d = Conv3d(in_channels=3, output_channels=8, kernel_size=1)
# b, c, z, h, w
x = torch.randn(8, 3, 5, 32, 32).float()
x = conv3d(x)
print(x)