forked from rozester/LinkedIn-Comments-Analyzer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinkedin-comments-grabber.py
134 lines (107 loc) · 4.1 KB
/
linkedin-comments-grabber.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
"""
LinkedIn Comments Analyzer
Copyright 2017 Amr Salama
Twitter: @amr_salama3
Github: rozester/LinkedInCommentAnalyzer
MIT License
Work Steps:-
1- Expand all comments and replies from linkedin post,
by clicking all "Show previous comments" until all comments are visible
2- Expand all comment replies by clicking all "Load previous replies" until all replies are visible
3- press f12 in your browser and select all comments with parent div it must be like this example:-
<div id="ember1482" class="feed-base-comments-list feed-base-comments-list--expanded ember-view"><!---->
<!---->
<article>
<article>
<article>
....
<article>
<div>
4- right click on that div and then press "Edit As HTML" and copy all contents
5- save these contents in a text file for example Comments.html and make sure that encoding is UTF-8
Enjoy Data Science :)
"""
import pandas as pd
from bs4 import BeautifulSoup
# the file which contains all comments
file = open('Comments.html', 'r',encoding='utf8')
html_doc = file.read()
file.close()
# Parse html file
soup = BeautifulSoup(html_doc, 'html.parser')
# Select all comments and replies html tags
comments = soup.div.find_all("article", recursive=False)
# Prepare Dataframe for loading all comments and replies inside it
output_comments_df = pd.DataFrame(columns=['CommentID', 'ParentID', 'LinkedIn ID', 'Name', 'Photo',
'Comment', 'Likes', 'Replies'])
# Data Cleansing Phase
def paragraph_cleaning(p):
# Normal Comment
if (p.span and p.span.span):
return p.span.span.string.replace('\n','').strip()
# # mention comment
# elif (p.span and p.span.a):
# return p.span.a.string.replace('\n','').strip()
# elif (p.a.span):
# return p.a.span.string.replace('\n','').strip()
# # url comment
# elif (cmnt.find('p').a):
# return cmnt.find('p').a.string.replace('\n','').strip()
# return p
# Complicated Comment
p_body = ""
for cmnt in p.children:
if (cmnt.string):
p_body = p_body + cmnt.string
else:
p_body = p_body + " " + cmnt.a.string
return p_body
def get_likes(comment):
# likes exists
likes = comment.find('button', class_="feed-base-comment-social-bar__likes-count Sans-13px-black-55% hoverable-link-text")
if (likes):
return likes.span.string.split(" ")[0]
return 0
def get_replies(comment):
# replies exists
replies = comment.find('button', class_="feed-base-comment-social-bar__comments-count Sans-13px-black-55% hoverable-link-text")
if (replies):
return replies.span.string.split(" ")[0]
return 0
i = 0
# Fill Dataframe with comments and replies
def add_comment(parent, comment):
global i
output_comments_df.loc[i] = \
[
i + 1,
parent,
comment.a.attrs.get('href'),
comment.find('span',
class_="feed-base-comment-item__name Sans-13px-black-70%-semibold").
string.replace('\n','').strip(),
comment.img.attrs.get('src'),
paragraph_cleaning(comment.find('p')),
get_likes(comment),
get_replies(comment)
]
i = i + 1
return i
# Get all replies
def add_comment_replies(parent, comment):
if (comment.article):
for cmnt in comment.find_all("article"):
add_comment(parent, cmnt)
# the main iterator for all comments and replies
for cmnt in comments:
cmnt_id = add_comment(0, cmnt)
add_comment_replies(cmnt_id, cmnt)
# Fixing Data Types
output_comments_df['CommentID'] = output_comments_df['CommentID'].astype(int)
output_comments_df['ParentID'] = output_comments_df['ParentID'].astype(int)
output_comments_df['Likes'] = output_comments_df['Likes'].astype(int)
output_comments_df['Replies'] = output_comments_df['Replies'].astype(int)
# Exporting to Excel file
writer = pd.ExcelWriter('output.xlsx')
output_comments_df.to_excel(writer,'Sheet1')
writer.save()