-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlp_linprog.py
143 lines (120 loc) · 5.1 KB
/
lp_linprog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/env python
""" lp_linprog.py: LP( A b c ... ) <-> scipy linprog Bag( A_ub b_ub A_eq b_eq bounds )
"""
from __future__ import division, print_function
import numpy as np
from numpy import inf, all, any, isfinite
from scipy import sparse
import glp
from glp.zutil import Bag, inftonone
#...............................................................................
def lp_to_linprog( lp, verbose=1 ):
""" in: LP( A b c ... ), see lprec.py
->lp, linrec:
lp: LP()
(after rows_le, may change A b blo)
linrec: Bag( A_ub b_ub A_eq b_eq bounds c )
for scipy linprog( **linrec )
blo <= Ax <= inf: flip to - Ax <= - blo
blo <= Ax <= b: add rows ** change A b **
split A b -> A_eq A_ub, b_eq b_ub csr_matrix or None
rownames, colnames ? ouch
"""
A, b, c, blo, lb, ub, name \
= lp.A, lp.b, lp.c, lp.blo, lp.lb, lp.ub, lp.problemname
A = sparse.csr_matrix( A ) # csR, don't change
# b blo lb ub +- inf, not None
if lp.maximize:
lp.c *= -1
lp.maximize = False
# change A b blo for linprog: rows_le, split_Ab
lp.A, lp.b, lp.blo = rows_le( A, b, blo )
linrec = split_Ab( lp.A, lp.b, lp.blo ) # grr A_ub b_ub A_eq b_eq
linrec.bounds = np.c_[ inftonone(lb), inftonone(ub) ]
linrec.c = c
if verbose:
print( "lp_to_linprog %s:" % name )
_norms_near0( A, "|A| rows", axis=1 )
# _norms_near0( A, "|A| cols", axis=0 )
_print_linrec( name=name, **linrec )
return lp, linrec # Bag( A_ub b_ub A_eq b_eq bounds c ) for scipy linprog
def linprog_to_lp( linrec, name="noname" ):
""" test-loopback.py: lp_to_linprog, linprog_to_lp """
A_ub, b_ub, A_eq, b_eq, c \
= linrec.A_ub, linrec.b_ub, linrec.A_eq, linrec.b_eq, linrec.c
lb, ub = linrec.bounds.T # grr inftonone
if A_ub is None: # all blo == Ax == b
return glp.LP( A_eq, b_eq, c, blo=b_eq, lb=lb, ub=ub, problemname=name )
if A_eq is None:
blo = - inf * np.ones( len(b_ub )) # all -inf <= Ax <= b
return glp.LP( A_ub, b_ub, c, blo=blo, lb=lb, ub=ub, problemname=name )
A = sparse.vstack(( A_ub.tocsr(), A_eq.tocsr() ))
b = np.hstack(( b_ub, b_eq ))
blo = np.r_[ - inf * np.ones( len(b_ub )), b_eq ]
return glp.LP( A, b, c, blo=blo, lb=lb, ub=ub, problemname=name ) # maximize=False
#...............................................................................
def rows_le( A, b, blo ):
""" -inf <= Ax <= inf: drop these rows, unconstrained
finite <= Ax <= inf: flip to - Ax <= - blo
2-sided blo < b, both finite: add rows - Ax <= - blo
blo == b: asis
"""
# -inf <= Ax <= inf, unconstrained
# (drop_unconstrained_rows in glp.py too)
juncon = (blo == -inf) & (b == inf)
nuncon = juncon.sum()
if nuncon > 0:
jcon = ~ juncon
ncon = jcon.sum()
print( "dropping unconstrained rows: %d -> %d" % (len(b), ncon) )
A, b, blo = A[jcon], b[jcon], blo[jcon]
# finite <= Ax <= inf: flip to - Ax <= - blo
jflip = isfinite( blo ) & (b == inf)
if any( jflip ):
A[jflip] *= -1
b[jflip] = - blo[jflip]
blo[jflip] = - inf
# print( "rows_le jflip: %s \n%s \n%s " % (jflip.astype(int), blo, b ))
# 2-sided blo <= Ax <= b, both finite: add rows - Ax <= - blo
jboth = isfinite( blo ) & (blo < b) & isfinite( b ) # leave blo == b alone
if any( jboth ):
A = A.tocsr()
A = sparse.vstack(( A, - A[jboth] ))
b = np.hstack(( b, - blo[jboth] ))
blo[jboth] = - inf
blo = np.hstack(( blo, - inf * np.ones( jboth.sum() )))
# print( "rows_le jboth: %s \n%s \n%s " % (jboth.astype(int), blo, b ))
assert A.shape[0] == len(b) == len(blo), [A.shape[0], len(b), len(blo)]
assert all( (blo == -inf) | (blo == b) ), "\n%s \n%s" % (blo, b)
return A, b, blo
#...............................................................................
def split_Ab( A, b, blo ):
""" -> Bag( A_ub b_ub A_eq b_eq ) """
# grr, stupid back-and-forth
jeq = (b == blo)
if not any( jeq ):
return Bag( A_ub=A, b_ub=b,
A_eq=None, b_eq=None )
if all( jeq ):
return Bag( A_ub=None, b_ub=None,
A_eq=A, b_eq=b )
A = A.tocsr() # see SO vstack
jne = (~ jeq).nonzero()[0]
jeq = jeq.nonzero()[0]
return Bag( A_ub=A[jne], b_ub=b[jne],
A_eq=A[jeq], b_eq=b[jeq] )
def _norms_near0( A, text, axis=1, near=1e-8 ):
from scipy.sparse.linalg import norm
norms = np.sort( norm( A, axis=axis, ord=np.inf ))
j = np.searchsorted( norms, near )
if j > 0:
print( "%s: %d of %d are ~ 0, then %s .. %s " % (
text, j, len(norms), norms[j:j+3], norms[-3:] ))
def _print_linrec( A_ub, b_ub, A_eq, b_eq, name, **kw ):
if A_ub is not None:
print( "A_ub %s b_ub %.3g .. %.3g " % (
A_ub.shape, b_ub.min(), b_ub.max() ))
if A_eq is not None:
print( "A_eq %s b_eq %.3g .. %.3g " % (
A_eq.shape, b_eq.min(), b_eq.max() ))
print( "" )