-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathevaluate_indianroad.py
119 lines (93 loc) · 4.17 KB
/
evaluate_indianroad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import argparse
import scipy
from scipy import ndimage
import numpy as np
import sys
import torch
from torch.autograd import Variable
import torchvision.models as models
import torch.nn.functional as F
from torch.utils import data, model_zoo
from model.deeplab_multi import Res_Deeplab
from dataset.indianroad_dataset import indianRoadDataSet
from collections import OrderedDict
import os
from PIL import Image
import matplotlib.pyplot as plt
import torch.nn as nn
IMG_MEAN = np.array((104.00698793,116.66876762,122.67891434), dtype=np.float32)
DATA_DIRECTORY = "./Indian_Road/"
DATA_LIST_PATH = "./Indian_Road/test.txt"
SAVE_PATH = "./Indian_Road/segmented_output"
IGNORE_LABEL = 255
NUM_CLASSES = 19
NUM_STEPS = 500 # Number of images in the validation set.
RESTORE_FROM = "./weights/GTA2Cityscapes_multi-ed35151c.pth"
#RESTORE_FROM = "./snapshots_vgg/GTA5_VGG_35000.pth"
SET = 'val'
palette = [128, 64, 128, 244, 35, 232, 70, 70, 70, 102, 102, 156, 190, 153, 153, 153, 153, 153, 250, 170, 30,
220, 220, 0, 107, 142, 35, 152, 251, 152, 70, 130, 180, 220, 20, 60, 255, 0, 0, 0, 0, 142, 0, 0, 70,
0, 60, 100, 0, 80, 100, 0, 0, 230, 119, 11, 32]
zero_pad = 256 * 3 - len(palette)
for i in range(zero_pad):
palette.append(0)
def colorize_mask(mask):
# mask: numpy array of the mask
new_mask = Image.fromarray(mask.astype(np.uint8)).convert('P')
new_mask.putpalette(palette)
return new_mask
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="DeepLab-ResNet Network")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the Cityscapes dataset.")
parser.add_argument("--data-list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the dataset.")
parser.add_argument("--ignore-label", type=int, default=IGNORE_LABEL,
help="The index of the label to ignore during the training.")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--gpu", type=int, default=0,
help="choose gpu device.")
parser.add_argument("--set", type=str, default=SET,
help="choose evaluation set.")
parser.add_argument("--save", type=str, default=SAVE_PATH,
help="Path to save result.")
return parser.parse_args()
def main():
"""Create the model and start the evaluation process."""
args = get_arguments()
gpu0 = args.gpu
if not os.path.exists(args.save):
os.makedirs(args.save)
model = Res_Deeplab(num_classes=args.num_classes)
if args.restore_from[:4] == 'http' :
saved_state_dict = model_zoo.load_url(args.restore_from)
else:
saved_state_dict = torch.load(args.restore_from)
model.load_state_dict(saved_state_dict)
model.eval()
model.cuda(gpu0)
testloader = data.DataLoader(indianRoadDataSet(args.data_dir, args.data_list, crop_size=(1024, 512), mean=IMG_MEAN, scale=False, mirror=False),
batch_size=1, shuffle=False, pin_memory=True)
interp = nn.Upsample(size=(1024, 2048), mode='bilinear')
for index, batch in enumerate(testloader):
if index % 100 == 0:
print '%d processd' % index
image, _, name = batch
output1, output2 = model(Variable(image, volatile=True).cuda(gpu0))
output = interp(output2).cpu().data[0].numpy()
output = output.transpose(1,2,0)
output = np.asarray(np.argmax(output, axis=2), dtype=np.uint8)
output_col = colorize_mask(output)
output = Image.fromarray(output)
name = name[0].split('/')[-1]
output.save('%s/%s' % (args.save, name))
output_col.save('%s/%s.png' % (args.save, name.split('.')[0]))
if __name__ == '__main__':
main()