-
Notifications
You must be signed in to change notification settings - Fork 42
/
bbh.py
202 lines (142 loc) · 6.83 KB
/
bbh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from argparse import Namespace
from typing import List
from datasets import load_dataset, get_dataset_config_names
from fire import Fire
from pydantic import BaseModel
from tqdm import tqdm
from modeling import select_model, EvalModel
class BBHSample(BaseModel):
input: str
target: str
def as_prompt(self, include_answer: bool = True):
prompt = self.input
prompt += "\nAnswer:"
if include_answer:
prompt += " {}\n\n".format(self.target)
return prompt
class BBHData(BaseModel):
samples: List[BBHSample]
@classmethod
def get_config_names(cls, path: str = "lukaemon/bbh") -> List[str]:
return get_dataset_config_names(path)
@classmethod
def load_from_huggingface(
cls, path: str = "lukaemon/bbh", config: str = "", split: str = "test"
):
data = load_dataset(path, config, split=split)
samples = [BBHSample(**raw) for raw in tqdm(data, desc=str((path, split)))]
return cls(samples=samples)
def gen_prompt(data: BBHData, k=-1):
prompt = ""
if k == -1:
k = len(data.samples)
for i in range(k):
prompt += data.samples[i].as_prompt()
return prompt
def evaluate(model: EvalModel, data: BBHData, ntrain: int) -> dict:
data_train = BBHData(samples=data.samples[:ntrain])
data_test = BBHData(samples=data.samples[ntrain:])
is_correct = []
for i in range(len(data_test.samples)):
# get prompt and make sure it fits
k = int(ntrain)
prompt_end = data_test.samples[i].as_prompt(include_answer=False)
train_prompt = gen_prompt(data_train, k)
prompt = train_prompt + prompt_end
while not model.check_valid_length(prompt) and k > 0:
k -= 1
train_prompt = gen_prompt(data_train, k)
prompt = train_prompt + prompt_end
label = data_test.samples[i].target
pred = model.run(prompt)
is_correct.append(pred.strip().startswith(label))
if i == 0:
print(dict(prompt=prompt, label=label, pred=pred))
return dict(score=sum(is_correct) / len(is_correct))
def main(data_dir: str = "lukaemon/bbh", ntrain: int = 3, **kwargs):
args = Namespace(**locals())
model = select_model(max_input_length=2048, max_output_length=32, **kwargs)
print(locals())
all_results = []
for name in tqdm(BBHData.get_config_names()):
data = BBHData.load_from_huggingface(config=name)
result = evaluate(model, data, ntrain=ntrain)
all_results.append(result)
print(dict(name=name, **result))
score = sum(res["score"] for res in all_results) / len(all_results)
print(dict(average=score))
return score
"""
p bbh.py main "lukaemon/bbh" --model_name seq_to_seq --model_path google/flan-t5-xl
{'average': 0.40261571422898645}
p bbh.py main "lukaemon/bbh" --model_name llama --model_path decapoda-research/llama-7b-hf
{'average': 0.30963361708212966}
p bbh.py main "lukaemon/bbh" --model_name llama --model_path chavinlo/alpaca-native
{'average': 0.3335667396422546}
p bbh.py main "lukaemon/bbh" --model_name chatglm --model_path THUDM/chatglm-6b
{'average': 0.31384628677534854}
python main.py bbh --model_name llama --model_path chavinlo/alpaca-13b --load_8bit
{'average': 0.33351335206026284}
python main.py bbh --model_name causal --model_path togethercomputer/Pythia-Chat-Base-7B
{'average': 0.29975163365323554}
python main.py bbh --model_name llama --model_path decapoda-research/llama-13b-hf --load_8bit
{'average': 0.3719930899679183}
python main.py bbh --model_name llama --model_path TheBloke/koala-7B-HF --load_8bit
{'average': 0.3118093830908477}
python main.py bbh --model_name llama --model_path TheBloke/koala-13B-HF --load_8bit
{'average': 0.3468942926723247}
python main.py bbh --model_name llama --model_path eachadea/vicuna-13b --load_8bit
{'average': 0.3717117791946168}
python main.py bbh --model_name causal --model_path togethercomputer/GPT-NeoXT-Chat-Base-20B --load_8bit
{'average': 0.30625775783670517}
python main.py bbh --model_name seq_to_seq --model_path google/flan-t5-xxl --load_8bit
{'average': 0.4391247239073324}
python main.py bbh --model_name seq_to_seq --model_path declare-lab/flan-alpaca-xl
{'average': 0.27024358682253424}
python main.py bbh --model_name causal --model_path databricks/dolly-v2-12b --load_8bit
{'average': 0.3003781793255478}
python main.py bbh --model_name llama --model_path wombat-7b-gpt4
{'average': 0.32478557123866053}
python main.py bbh --model_name causal --model_path OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5 --load_8bit
{'average': 0.3008946837550956}
python main.py bbh --model_name seq_to_seq --model_path declare-lab/flan-alpaca-gpt4-xl
{'average': 0.3481774107746648}
python main.py bbh --model_name seq_to_seq --model_path google/flan-t5-xl --lora_path declare-lab/flan-alpaca-xl-lora
{'average': 0.280621115472374}
python main.py bbh --model_name causal --model_path stabilityai/stablelm-base-alpha-7b
{'average': 0.27506399778710994}
python main.py bbh --model_name llama --model_path huggyllama/llama-30b --load_8bit
{'average': 0.39346261713538594}
python main.py bbh --model_name llama --model_path huggyllama/llama-13b --load_8bit
{'average': 0.3719930899679183}
python main.py bbh --model_name causal --model_path Salesforce/codegen-6B-mono
{'average': 0.29238637284403873}
python main.py bbh --model_name llama --model_path TheBloke/wizardLM-7B-HF --load_8bit
{'average': 0.32918965812558487}
python main.py bbh --model_name causal --model_path ../FlanPaca/export/flan-opt-3b
{'average': 0.2885727015589716}
python main.py bbh --model_name causal --model_path ../FlanPaca/export/alpaca-opt-3b
{'average': 0.29839096448936264}
python main.py bbh --model_name causal --model_path facebook/opt-2.7b
{'average': 0.2883221490772978}
python main.py bbh --model_name seq_to_seq --model_path bigscience/T0pp --load_8bit
{'average': 0.10846421143903981}
python main.py bbh --model_name openai --model_path VisualQuestionAnswering --use_azure
{'average': 0.49579194980796804}
python main.py bbh --model_name seq_to_seq --model_path bigscience/T0pp --load_8bit
{'average': 0.10846421143903981}
python main.py bbh --model_name llama --model_path TheBloke/OpenAssistant-SFT-7-Llama-30B-HF --load_8bit
{'average': 0.3928688114157221}
python main.py bbh --model_name causal --model_path stabilityai/stablelm-tuned-alpha-7b
{'average': 0.2892898981686167}
python main.py bbh --model_name causal --model_path bigscience/bloomz-7b1
{'average': 0.2527831178060011}
python main.py bbh --model_name seq_to_seq --model_path google/flan-ul2 --load_8bit
{'average': 0.4479251941380086}
python main.py bbh --model_name causal --model_path facebook/opt-iml-30b --load_8bit
{'average': 0.31348283464988275}
python main.py bbh --model_name seq_to_seq --model_path declare-lab/flan-alpaca-xxl --load_8bit
{'average': 0.23395300775163477}
"""
if __name__ == "__main__":
Fire()