-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1d_1st.F90
541 lines (464 loc) · 13.1 KB
/
1d_1st.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
! the simplest case, 1d and 1st order(linear) element
! solve d^2u/dx^2 = lambda (0 <= x <= L)
! boundary condition: u(0) = 0 (Dirichlet boundary condition)
! du/dx(L) = 0 (Neumann boundary condition)
! analytic solution: u(x) = lambda/2*x(x-2L)
module vars
implicit none
integer,parameter :: ui = 7, ui_nml = 11, ui_out = 8
integer,parameter :: dp = kind(1.0d0)
real(dp) :: length ! L
integer :: iter_max
real(dp) :: tol
real(dp) :: lambda
type elem
integer :: nelements
integer :: nnodes
real(dp),allocatable,dimension(:) :: u, b, ls, pts
real(dp),allocatable,dimension(:, :) :: a
real(dp),allocatable,dimension(:, :, :) :: submat ! sub matrices for each elements, just a temporary buffer
real(dp),allocatable,dimension(:, :) :: subvec ! sub vectors for right hand side vector, just a temporary buffer
end type elem
contains
subroutine get_size(e)
implicit none
type(elem),intent(inout) :: e
integer :: size
e%nelements = 0
e%nnodes = 0
size = 0
open(ui)
do while(.true.)
read(ui, *, end=10)
size = size + 1
end do
10 close(ui)
e%nnodes = size + 2
e%nelements = size + 1
end subroutine get_size
subroutine read_namelist
implicit none
namelist/params/length, iter_max, tol, lambda
read(ui_nml, nml=params)
end subroutine read_namelist
subroutine allocate_arrays(e)
implicit none
type(elem),intent(inout) :: e
allocate(e%u(e%nnodes), e%b(e%nnodes), e%pts(e%nnodes))
allocate(e%a(e%nnodes, e%nnodes))
allocate(e%ls(e%nelements))
allocate(e%submat(2, 2, e%nelements))
allocate(e%subvec(2, e%nelements))
! zero clear
!$omp parallel
!$omp workshare
e%u = 0.0d0
e%b = 0.0d0
e%pts = 0.0d0
e%a = 0.0d0
e%ls = 0.0d0
e%submat = 0.0d0
e%subvec = 0.0d0
!$omp end workshare
!$omp end parallel
end subroutine allocate_arrays
subroutine deallocate_arrays(e)
implicit none
type(elem),intent(inout) :: e
deallocate(e%u, e%b, e%a, e%ls, e%pts, e%submat, e%subvec)
end subroutine deallocate_arrays
subroutine read_input(e)
implicit none
type(elem),intent(inout) :: e
integer :: i, size
e%pts(1) = 0.0d0
do i = 2, e%nnodes - 1
read(ui, *) e%pts(i)
if (e%pts(i) >= length) then
write(6, *) "input value is greater than length,", length
stop
else if (e%pts(i) <= 0.0d0) then
write(6, *) "input value is less than 0"
stop
end if
end do
e%pts(e%nnodes) = length
end subroutine read_input
subroutine calc_lengths(e)
implicit none
type(elem),intent(inout) :: e
integer :: i
do i = 1, e%nelements
e%ls(i) = e%pts(i+1) - e%pts(i)
end do
end subroutine calc_lengths
subroutine calc_submats(e)
implicit none
type(elem),intent(inout) :: e
integer :: i, j, k
! first order element, ((x_{n+1}-x)/l_n, (x-x_n)/l_n), l_n = x_{n+1}-x_n
do k = 1, e%nelements
do j = 1, 2
do i = 1, 2
if (i == j) then
e%submat(i, j, k) = 1.0d0/e%ls(k)
else
e%submat(i, j, k) = -1.0d0/e%ls(k)
end if
end do
end do
end do
end subroutine calc_submats
! linear function f(x) = alpha*x + beta
function lin(alpha, beta, x) result(res)
implicit none
real(dp),intent(in) :: alpha, beta, x
real(dp) :: res
res = alpha*x + beta
end function lin
! numerical integration
! gaussian quadrature for linear function
! integrate alpha*x + beta from a to b
function gauss_quad(alpha, beta, a, b) result(res)
implicit none
real(dp),intent(in) :: alpha, beta, a, b
real(dp) :: res, x
integer,parameter :: npts = 2
real(dp),dimension(npts),parameter :: weights = (/1.0d0, 1.0d0/)
real(dp),dimension(npts),parameter :: gauss_nodes = (/-1.0d0/sqrt(3.0d0), 1.0d0/sqrt(3.0d0)/)
integer :: i
res = 0.0d0
do i = 1, npts
x = (b - a)/2.0d0*gauss_nodes(i) + (b + a)/2.0d0
res = res + (b - a)/2.0d0*weights(i)*lin(alpha, beta, x)
end do
end function gauss_quad
! calculate sub vectors of right hand side vector
! lambda*(\int_{x_i}^x_{i+1}dx(x_{i+1}-x)/l_i, \int_{x_i}^x_{i+1}dx(x-x_i)/l_i)
subroutine calc_subvecs(e)
implicit none
type(elem),intent(inout) :: e
integer :: i
do i = 1, e%nelements
e%subvec(1, i) = -1.0d0*lambda*gauss_quad(-1.0d0/e%ls(i), 1.0d0*e%pts(i+1)/e%ls(i), e%pts(i), e%pts(i+1))
e%subvec(2, i) = -1.0d0*lambda*gauss_quad( 1.0d0/e%ls(i), -1.0d0*e%pts(i)/e%ls(i), e%pts(i), e%pts(i+1))
end do
end subroutine calc_subvecs
! assemble local matrices to global one
subroutine asm_submats(e)
implicit none
type(elem),intent(inout) :: e
integer :: i, j, k
do k = 1, e%nelements
do j = 1, 2
do i = 1, 2
e%a(k+i-1, k+j-1) = e%a(k+i-1, k+j-1) + e%submat(i, j, k)
end do
end do
end do
! the above matrix does not have an inverse matrix, so add a condition by the boundary condition: u_1 = 0
! | 1 0 0 0 | |u_1| | 0 |
! | | | | = | |
! | | | | | |
! | | | | | |
e%a(1, 1) = 1.0d0
e%a(1, 2) = 0.0d0
end subroutine asm_submats
! assemble right hand side vector b
subroutine asm_subvecs(e)
implicit none
type(elem),intent(inout) :: e
integer :: i, j
do j = 1, e%nelements
do i = 1, 2
e%b(j+i-1) = e%b(j+i-1) + e%subvec(i, j)
end do
end do
! u_1 = 0
e%b(1) = 0.0d0
end subroutine asm_subvecs
subroutine debug(e)
implicit none
type(elem),intent(in) :: e
integer :: i, j
write(6, *) "e%nelements:", e%nelements
write(6, *) "e%nnodes: ", e%nnodes
write(6, *) "points:"
do i = 1, e%nnodes
write(6, '(1pe14.5)', advance='no') e%pts(i)
end do
write(6, *)
write(6, *) "lhs A:"
do i = 1, e%nnodes
do j = 1, e%nnodes
write(6, '(1pe14.5)', advance='no') e%a(i, j)
end do
write(6, *)
end do
write(6, *)
write(6, *) "rhs b:"
do i = 1, e%nnodes
write(6, '(1pe14.5)') e%b(i)
end do
end subroutine debug
subroutine write_output(e)
implicit none
type(elem),intent(in) :: e
integer :: i
open(ui_out, file='result.dat', form='unformatted', access='stream')
write(ui_out) e%u
close(ui_out)
end subroutine write_output
function exact_sol(e, x) result(res)
implicit none
type(elem),intent(in) :: e
real(dp),intent(in) :: x
real(dp) :: res
res = lambda/2.0d0*x*(x - 2.0d0*length)
end function exact_sol
subroutine check(e)
implicit none
type(elem),intent(in) :: e
integer :: i
real(dp) :: exact, diff
!$omp parallel do private(exact, diff)
do i = 1, e%nnodes
exact = exact_sol(e, e%pts(i))
diff = e%u(i) - exact
if (diff >= tol) then
write(6, '(i0, 3(1pe14.5))') i, exact, e%u(i), diff
write(6, *) "incorrect result."
stop
end if
end do
write(6, *) "check passed."
end subroutine check
! ax = A*x
subroutine a_dot_x(size, a, x, ax)
implicit none
integer,intent(in) :: size
real(dp),dimension(size, size),intent(in) :: a
real(dp),dimension(size),intent(in) :: x
real(dp),dimension(size),intent(out) :: ax
integer :: i, j
!$omp parallel
!$omp workshare
ax = 0.0d0
!$omp end workshare
!$omp do
do i = 1, size
do j = 1, size
ax(i) = ax(i) + a(i, j)*x(j)
end do
end do
!$omp end do
!$omp end parallel
end subroutine a_dot_x
! C = A*B
subroutine a_dot_b(size, a, b, c)
implicit none
integer,intent(in) :: size
real(dp),dimension(size, size),intent(in) :: a, b
real(dp),dimension(size, size),intent(out) :: c
integer :: i, j, k
!$omp parallel private(i, j, k)
!$omp workshare
c = 0.0d0
!$omp end workshare
!$omp do
do j = 1, size
do k = 1, size
do i = 1, size
c(i, j) = c(i, j) + a(i, k)*b(k, j)
end do
end do
end do
!$omp end do
!$omp end parallel
end subroutine a_dot_b
! inner product xy = x*y
subroutine x_dot_y(size, x, y, xy)
implicit none
integer,intent(in) :: size
real(dp),dimension(size),intent(in) :: x, y
real(dp),intent(out) :: xy
integer :: i
xy = 0.0d0
!$omp parallel do reduction(+:xy)
do i = 1, size
xy = xy + x(i)*y(i)
end do
end subroutine x_dot_y
! calc r = b - A*x
subroutine b_minus_ax(size, a, x, b, r)
implicit none
integer,intent(in) :: size
real(dp),dimension(size, size),intent(in) :: a
real(dp),dimension(size),intent(in) :: x, b
real(dp),dimension(size),intent(out) :: r
real(dp),dimension(size) :: ax
integer :: i
call a_dot_x(size, a, x, ax)
!$omp parallel do
do i = 1, size
r(i) = b(i) - ax(i)
end do
end subroutine b_minus_ax
! need to solve asymmetric matrix
! http://www.jicfus.jp/wiki/index.php?Bi-CGSTAB%20%E6%B3%95
! https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method
subroutine bicgstab(size, a, x, b)
implicit none
integer,intent(in) :: size
real(dp),dimension(size, size),intent(in) :: a
real(dp),dimension(size),intent(out) :: x
real(dp),dimension(size),intent(in) :: b
integer :: i, j, iter
real(dp),dimension(size) :: r, r_new, v, v_new, p, p_new
real(dp),dimension(size) :: r0, h, s, t
real(dp),dimension(size) :: rr
real(dp),dimension(size) :: xx, xx_new
real(dp) :: rho, rho_new, omega, omega_new
real(dp) :: alpha, beta
real(dp) :: r0r, t2, r0v, ts, res
real(dp),dimension(size, size) :: pinv ! preconditioning matrix, diag(1/A{ii})
real(dp),dimension(size, size) :: pinv_a
real(dp),dimension(size) :: pinv_b
! left precondition
! (P^{-1}A)x = P^{-1}b
!$omp parallel
!$omp workshare
pinv = 0.0d0
!$omp end workshare
!$omp do
do i = 1, size
pinv(i, i) = 1/a(i, i)
end do
!$omp end do
! P^{-1}b = b_i/A_{ii}
!$omp do
do i = 1, size
pinv_b(i) = pinv(i, i)*b(i)
end do
!$omp end parallel
! P^{-1}A
call a_dot_b(size, pinv, a, pinv_a)
!$omp parallel
!$omp workshare
xx = pinv_b ! initial guess
!$omp end workshare
!$omp end parallel
call b_minus_ax(size, pinv_a, xx, pinv_b, r)
!$omp parallel
!$omp workshare
r0 = r
!$omp end workshare
!$omp end parallel
call x_dot_y(size, r0, r, r0r)
if (r0r == 0.0d0) then
write(6, *) "r*r0 is zero."
stop
end if
rho = 1.0d0
alpha = 1.0d0
omega = 1.0d0
!$omp parallel
!$omp workshare
v = 0.0d0
p = 0.0d0
!$omp end workshare
!$omp end parallel
do iter = 1, iter_max
call x_dot_y(size, r0, r, rho_new)
beta = (rho_new/rho)*(alpha/omega)
!$omp parallel do
do i = 1, size
p_new(i) = r(i) + beta*(p(i)-omega*v(i))
end do
call a_dot_x(size, pinv_a, p_new, v_new)
call x_dot_y(size, r0, v_new, r0v)
alpha = rho_new/r0v
!$omp parallel do
do i = 1, size
h(i) = xx(i) + alpha*p_new(i)
end do
call b_minus_ax(size, pinv_a, h, pinv_b, rr)
call x_dot_y(size, rr, rr, res)
res = sqrt(res)
if (res <= tol) then
!$omp parallel
!$omp workshare
xx_new = h
!$omp end workshare
!$omp end parallel
exit
end if
!$omp parallel do
do i = 1, size
s(i) = r(i) - alpha*v_new(i)
end do
call a_dot_x(size, pinv_a, s, t)
call x_dot_y(size, t, s, ts)
call x_dot_y(size, t, t, t2)
omega_new = ts/t2
!$omp parallel do
do i = 1, size
xx_new(i) = h(i) + omega_new*s(i)
end do
call b_minus_ax(size, pinv_a, xx_new, pinv_b, rr)
call x_dot_y(size, rr, rr, res)
res = sqrt(res)
if (res <= tol) exit
!$omp parallel do
do i = 1, size
r_new(i) = s(i) - omega_new*t(i)
end do
!$omp parallel
!$omp workshare
xx = xx_new
p = p_new
r = r_new
v = v_new
!$omp end workshare
!$omp end parallel
rho = rho_new
omega = omega_new
end do ! iter
if (iter>=iter_max .and. res>tol) then
write(6, *) "did not converge."
write(6, *) "iter_max, res:", iter_max, res
stop
end if
! converged
write(6, *) "BiCGSTAB method converged."
write(6, *) "iter, res:", iter, res
!$omp parallel
!$omp workshare
x = xx_new
!$omp end workshare
!$omp end parallel
end subroutine bicgstab
end module vars
program main
use vars
implicit none
type(elem) :: e
call get_size(e)
call read_namelist
call allocate_arrays(e)
call read_input(e)
call calc_lengths(e)
call calc_submats(e)
call calc_subvecs(e)
call asm_submats(e)
call asm_subvecs(e)
#ifdef _DEBUG
call debug(e)
#endif
! solve Au = b
call bicgstab(e%nnodes, e%a, e%u, e%b)
call check(e)
call write_output(e)
call deallocate_arrays(e)
stop
end program main