forked from JLucasFFerraz/DBpedia_doc_onto_extraction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels_config.py
45 lines (38 loc) · 1.9 KB
/
models_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Default model schemas:
# WEAVIATE INTEGRATION
# {
# "integration-type": "weaviate",
# "vectorized-function-name": "Configure.NamedVectors.text2vec_ollama", # THe name of the function that will be used to vectorize the text (any available from Configure.NamedVectors)
# "api-model-name": "snow-aea 2020 40 supce col&%/&()l", # The name of the weaviate-compatible model to use
# "internal-model-name": "snow-aea", # The name to use internally
# "vectorizer-parameters": {
# "api_endpoint": "http://mygpu-server:11434", # The endpoint of the inference engine server
# "model": "snowflake-arctic-embed" # The name of the model in the server
# }
# EMBEDDED INTEGRATION
# {
# "integration-type": "embedded",
# "internal-model-name": "snow-aea", # The name to use internally
# "api-model-name": "snow-aea 2020 40 supce col&%/&()l", # The name of the weaviate-compatible model to use
# "vectorizer-parameters": {
# "model_name": "sentence-transformers/all-mpnet-base-v2" # The name of the model to use
# }
model_1 = {
"integration-type": "weaviate",
"vectorized-function-name": "Configure.NamedVectors.text2vec_ollama",
"api-model-name": "snow-aea 2020 40 supce col&%/&()l", # needs to be weaviate compatible
"internal-model-name": "snow-aea",
"vectorizer-parameters": {
"api_endpoint": "http://mygpu-server:11434",
"model": "snowflake-arctic-embed"
}
}
model_2 = {
"integration-type": "embedded",
"internal-model-name": "snow-aea",
"api-model-name": "snow-aea 2020 40 supce col&%/&()l", # needs to be weaviate compatible
"vectorizer-parameters": {
"model_name": "sentence-transformers/all-mpnet-base-v2"
}
}
MODEL_CONFIGS = [model_1, model_2]