-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathqa_vqe.py
63 lines (48 loc) · 1.77 KB
/
qa_vqe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
from scipy.optimize import minimize
from pyquil import Program, get_qc
#==============================================================================
# Variational-Quantum-Eigensolver
#==============================================================================
# Create connection with QVM
qc = get_qc('2q-qvm')
# Define matrix
from pyquil.paulis import sZ
H = sZ(0)
# Define ansatz
from pyquil.gates import RY
def ansatz(params):
return Program(RY(params[0], 0))
# Function calculating expectation value
def expectation(params):
# Define number of measurments
samples = 10000
# Define program
prog = ansatz(params)
# Measure
ro = prog.declare('ro', 'BIT', 1) # Classical registry storing the results
prog.measure(0, ro[0])
# Compile and execute
prog.wrap_in_numshots_loop(samples)
prog_exec = qc.compile(prog)
ret = qc.run(prog_exec)
# Calculate expectation
freq_is_0 = [trial[0] for trial in ret].count(0) / samples
freq_is_1 = [trial[0] for trial in ret].count(1) / samples
return freq_is_0 - freq_is_1
# Test of expectation value function
test = expectation([0.0])
print(test)
# Draw expectation alue against parameter value
params_range = np.linspace(0.0, 2 * np.pi, 25)
data = [expectation([params]) for params in params_range]
import matplotlib.pyplot as plt
plt.xlabel('Parameter value')
plt.ylabel('Expectation value')
plt.plot(params_range, data)
plt.show()
# Minimize and get approximate of the lowest eigenvalue
initial_params = [0.0]
minimum = minimize(expectation, initial_params, method='Nelder-Mead',
options={'initial_simplex': np.array([[0.0], [0.05]]), 'xatol': 1.0e-2})
print(minimum)