-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmarkmap.html
40 lines (40 loc) · 19.3 KB
/
markmap.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="ie=edge">
<title>Markmap</title>
<style>
* {
margin: 0;
padding: 0;
}
#mindmap {
display: block;
width: 100vw;
height: 100vh;
}
</style>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/style.css">
</head>
<body>
<svg id="mindmap"></svg>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/d3.min.js"></script><script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/browser/index.js"></script><script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/index.js"></script><script>(r => {
setTimeout(r);
})(() => {
const {
markmap,
mm
} = window;
const {
el
} = markmap.Toolbar.create(mm);
el.setAttribute('style', 'position:absolute;bottom:20px;right:20px');
document.body.append(el);
})</script><script>((getMarkmap, getOptions, root, jsonOptions) => {
const markmap = getMarkmap();
window.mm = markmap.Markmap.create('svg#mindmap', (getOptions || markmap.deriveOptions)(jsonOptions), root);
})(() => window.markmap,null,{"type":"root","depth":0,"content":"","children":[{"type":"heading","depth":1,"payload":{"lines":[0,1]},"content":"Mind Map: Quantum Lagrangian Simulation","children":[{"type":"heading","depth":2,"payload":{"lines":[2,3]},"content":"Mathematical Expression","children":[{"type":"list_item","depth":3,"payload":{"lines":[4,5]},"content":"<strong>Classical Lagrangian</strong>","children":[{"type":"list_item","depth":4,"payload":{"lines":[5,6]},"content":"Captures the dynamics of the system.","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[6,7]},"content":"Involves an electromagnetic wave and qubits.","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[7,8]},"content":"Equation:","children":[{"type":"list_item","depth":5,"payload":{"lines":[8,9]},"content":"(\\mathcal{L} = \\sum_n \\left[\\left(\\frac{{\\dot{\\Phi}<em>n}}{{2c}}\\right)^2 - \\frac{{(\\Phi_n - \\Phi</em>{n-1} - \\tilde{\\Psi}<em>n)^2}}{{2L}} + \\mathcal{L}</em>{n,\\text{qb}}(\\Psi,\\dot{\\Psi})\\right])","children":[]}]}]}]},{"type":"heading","depth":2,"payload":{"lines":[10,11]},"content":"Python3 Script","children":[{"type":"bullet_list","depth":3,"payload":{"lines":[12,24]},"content":"","children":[{"type":"list_item","depth":4,"payload":{"lines":[12,13]},"content":"<strong>Simulation of Lagrangian System</strong>","children":[{"type":"list_item","depth":5,"payload":{"lines":[13,14]},"content":"Solves a simplified version of the Lagrangian system using Python.","children":[]},{"type":"list_item","depth":5,"payload":{"lines":[14,15]},"content":"Simulates the evolution of (\\Phi_n) over time.","children":[]},{"type":"list_item","depth":5,"payload":{"lines":[15,16]},"content":"Features:","children":[{"type":"list_item","depth":6,"payload":{"lines":[16,17]},"content":"Constants: (c), (L), (n_{\\text{points}})","children":[]},{"type":"list_item","depth":6,"payload":{"lines":[17,18]},"content":"State initialization","children":[]},{"type":"list_item","depth":6,"payload":{"lines":[18,19]},"content":"Time evolution parameters: (dt), (time_{\\text{steps}})","children":[]},{"type":"list_item","depth":6,"payload":{"lines":[19,20]},"content":"Lagrangian terms computation","children":[]},{"type":"list_item","depth":6,"payload":{"lines":[20,21]},"content":"Update of (\\Phi) and (\\Psi) based on dynamics","children":[]},{"type":"list_item","depth":6,"payload":{"lines":[21,22]},"content":"Storage of history for plotting","children":[]},{"type":"list_item","depth":6,"payload":{"lines":[22,23]},"content":"Plotting of the evolution of (\\Phi_n) over time","children":[]}]}]}]},{"type":"heading","depth":3,"payload":{"lines":[24,25]},"content":"Constants","children":[{"type":"list_item","depth":4,"payload":{"lines":[26,27]},"content":"(c) (Speed of light): 1","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[27,28]},"content":"(L) (Inductance): 1","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[28,29]},"content":"(n_{\\text{points}}) (Number of qubits): 100","children":[]}]},{"type":"heading","depth":3,"payload":{"lines":[30,31]},"content":"State Initialization","children":[{"type":"list_item","depth":4,"payload":{"lines":[32,33]},"content":"(\\Phi_n): Array of zeros with length (n_{\\text{points}})","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[33,34]},"content":"(\\dot{\\Phi}<em>n): Array of zeros with length (n</em>{\\text{points}})","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[34,35]},"content":"(\\Psi_n): Array of zeros with length (n_{\\text{points}})","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[35,36]},"content":"(\\dot{\\Psi}<em>n): Array of zeros with length (n</em>{\\text{points}})","children":[]}]},{"type":"heading","depth":3,"payload":{"lines":[37,38]},"content":"Time Evolution Parameters","children":[{"type":"list_item","depth":4,"payload":{"lines":[39,40]},"content":"(dt) (Time step): 0.01","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[40,41]},"content":"(time_{\\text{steps}}) (Number of time steps): 100","children":[]}]},{"type":"heading","depth":3,"payload":{"lines":[42,43]},"content":"Lagrangian Terms Computation","children":[{"type":"list_item","depth":4,"payload":{"lines":[44,45]},"content":"For each qubit (n):","children":[{"type":"list_item","depth":5,"payload":{"lines":[45,46]},"content":"Compute the Lagrangian terms:","children":[{"type":"list_item","depth":6,"payload":{"lines":[46,47]},"content":"Kinetic term: (\\left(\\frac{{\\dot{\\Phi}_n}}{{2c}}\\right)^2)","children":[]},{"type":"list_item","depth":6,"payload":{"lines":[47,48]},"content":"Potential term: (\\frac{{(\\Phi_n - \\Phi_{n-1} - \\tilde{\\Psi}_n)^2}}{{2L}})","children":[]}]}]}]},{"type":"heading","depth":3,"payload":{"lines":[49,50]},"content":"Update of (\\Phi) and (\\Psi) based on Dynamics","children":[{"type":"list_item","depth":4,"payload":{"lines":[51,52]},"content":"Update (\\dot{\\Phi}<em>n) by adding random noise: (\\text{np.random.normal}(0, 0.01, n</em>{\\text{points}}))","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[52,53]},"content":"Update (\\Phi_n) by adding (\\dot{\\Phi}_n \\times dt)","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[53,54]},"content":"Update (\\Psi_n) by adding (\\dot{\\Psi}_n \\times dt)","children":[]}]},{"type":"heading","depth":3,"payload":{"lines":[55,56]},"content":"Storage of History for Plotting","children":[{"type":"list_item","depth":4,"payload":{"lines":[57,58]},"content":"Store the values of (\\Phi_n) at each time step in a list called (\\text{Phi_history})","children":[]}]},{"type":"heading","depth":3,"payload":{"lines":[59,60]},"content":"Plotting","children":[{"type":"list_item","depth":4,"payload":{"lines":[61,62]},"content":"Create a figure with size (10, 6)","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[62,63]},"content":"Plot every 10th element of (\\text{Phi_history}) against the qubit index","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[63,64]},"content":"Label each plot with the corresponding timestep","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[64,65]},"content":"Set the x-axis label to "Qubit Index"","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[65,66]},"content":"Set the y-axis label to "(\\Phi_n)"","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[66,67]},"content":"Set the title to "Evolution of (\\Phi_n) over Time"","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[67,68]},"content":"Display a legend","children":[]}]}]}]},{"type":"heading","depth":1,"payload":{"lines":[69,70]},"content":"Mind Map: Why Quantum Engineering?","children":[{"type":"heading","depth":2,"payload":{"lines":[71,72]},"content":"Abstract","children":[{"type":"list_item","depth":3,"payload":{"lines":[73,74]},"content":"Progress in experimental and theoretical fields.","children":[]},{"type":"list_item","depth":3,"payload":{"lines":[74,75]},"content":"Quantum coherent solid-state qubits as building blocks.","children":[]},{"type":"list_item","depth":3,"payload":{"lines":[75,76]},"content":"Explores quantum-classical boundary.","children":[]}]},{"type":"heading","depth":2,"payload":{"lines":[77,78]},"content":"Introduction","children":[{"type":"list_item","depth":3,"payload":{"lines":[79,80]},"content":"Distinct from nanotechnology and quantum computing.","children":[]},{"type":"list_item","depth":3,"payload":{"lines":[80,81]},"content":"Addresses the quantum effects in engineering.","children":[]}]},{"type":"heading","depth":2,"payload":{"lines":[82,83]},"content":"Background","children":[{"type":"list_item","depth":3,"payload":{"lines":[84,85]},"content":"<strong>Miniaturization and Nanotechnology</strong>","children":[{"type":"list_item","depth":4,"payload":{"lines":[85,86]},"content":"Momentum behind nanotechnology from miniaturization.","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[86,87]},"content":"Quantum effects important in mesoscopic physics.","children":[]}]},{"type":"list_item","depth":3,"payload":{"lines":[88,89]},"content":"<strong>Quantum Computing</strong>","children":[{"type":"list_item","depth":4,"payload":{"lines":[89,90]},"content":"Algorithms like Shor's and Grover's.","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[90,91]},"content":"DiVincenzo criteria for scalable quantum computer.","children":[]}]}]},{"type":"heading","depth":2,"payload":{"lines":[92,93]},"content":"Physical Aspects","children":[{"type":"list_item","depth":3,"payload":{"lines":[94,95]},"content":"<strong>Criteria for Quantum Computer</strong>","children":[{"type":"list_item","depth":4,"payload":{"lines":[95,96]},"content":"Initialize qubit states.","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[96,97]},"content":"Long decoherence times.","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[97,98]},"content":"Universal quantum gates.","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[98,99]},"content":"Qubit-specific measurements.","children":[]}]},{"type":"list_item","depth":3,"payload":{"lines":[100,101]},"content":"<strong>Solid-State Devices</strong>","children":[{"type":"list_item","depth":4,"payload":{"lines":[101,102]},"content":"Superconducting devices and quantum dots.","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[102,103]},"content":"Decoherence times and scalability.","children":[]}]}]},{"type":"heading","depth":2,"payload":{"lines":[104,105]},"content":"Recent Developments","children":[{"type":"list_item","depth":3,"payload":{"lines":[106,107]},"content":"<strong>Macroscopic Schrödinger Cat States</strong>","children":[{"type":"list_item","depth":4,"payload":{"lines":[107,108]},"content":"Testing the limits of quantum mechanics.","children":[]}]},{"type":"list_item","depth":3,"payload":{"lines":[109,110]},"content":"<strong>Quantum Engineering as a Branch</strong>","children":[{"type":"list_item","depth":4,"payload":{"lines":[110,111]},"content":"Large systems of interacting qubits.","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[111,112]},"content":"Quantum coherence in large systems.","children":[]}]}]},{"type":"heading","depth":2,"payload":{"lines":[113,114]},"content":"Systems of Concern","children":[{"type":"list_item","depth":3,"payload":{"lines":[115,116]},"content":"<strong>Criteria</strong>","children":[{"type":"list_item","depth":4,"payload":{"lines":[116,117]},"content":"Weaker than DiVincenzo's.","children":[]}]},{"type":"list_item","depth":3,"payload":{"lines":[118,119]},"content":"<strong>Electromagnetic Wave in Qubits</strong>","children":[{"type":"list_item","depth":4,"payload":{"lines":[119,120]},"content":"Classical Lagrangian for the problem.","children":[]}]}]},{"type":"heading","depth":2,"payload":{"lines":[121,122]},"content":"Quantum Metamaterial","children":[{"type":"list_item","depth":3,"payload":{"lines":[123,124]},"content":"<strong>Light Scattering</strong>","children":[{"type":"list_item","depth":4,"payload":{"lines":[124,125]},"content":"Quantum superposition of different refractive indices.","children":[]}]}]},{"type":"heading","depth":2,"payload":{"lines":[126,127]},"content":"Conclusion","children":[{"type":"list_item","depth":3,"payload":{"lines":[128,129]},"content":"<strong>Theoretical and Experimental Progress</strong>","children":[{"type":"list_item","depth":4,"payload":{"lines":[129,130]},"content":"Macroscopic structures from quantum coherent qubits.","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[130,131]},"content":"Testing the limits of quantum mechanics.","children":[]}]}]}]},{"type":"heading","depth":1,"payload":{"lines":[132,133]},"content":"Mind Map: Quantum Lagrangian Simulation","children":[{"type":"heading","depth":2,"payload":{"lines":[134,135]},"content":"Mathematical Expression","children":[{"type":"list_item","depth":3,"payload":{"lines":[136,137]},"content":"<strong>Classical Lagrangian</strong>","children":[{"type":"list_item","depth":4,"payload":{"lines":[137,138]},"content":"Captures the dynamics of the system.","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[138,139]},"content":"Involves an electromagnetic wave and qubits.","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[139,140]},"content":"Equation:","children":[{"type":"list_item","depth":5,"payload":{"lines":[140,141]},"content":"(\\mathcal{L} = \\sum_n \\left[\\left(\\frac{{\\dot{\\Phi}<em>n}}{{2c}}\\right)^2 - \\frac{{(\\Phi_n - \\Phi</em>{n-1} - \\tilde{\\Psi}<em>n)^2}}{{2L}} + \\mathcal{L}</em>{n,\\text{qb}}(\\Psi,\\dot{\\Psi})\\right])","children":[]}]}]}]},{"type":"heading","depth":2,"payload":{"lines":[142,143]},"content":"Python3 Script","children":[{"type":"bullet_list","depth":3,"payload":{"lines":[144,156]},"content":"","children":[{"type":"list_item","depth":4,"payload":{"lines":[144,145]},"content":"<strong>Simulation of Lagrangian System</strong>","children":[{"type":"list_item","depth":5,"payload":{"lines":[145,146]},"content":"Solves a simplified version of the Lagrangian system using Python.","children":[]},{"type":"list_item","depth":5,"payload":{"lines":[146,147]},"content":"Simulates the evolution of (\\Phi_n) over time.","children":[]},{"type":"list_item","depth":5,"payload":{"lines":[147,148]},"content":"Features:","children":[{"type":"list_item","depth":6,"payload":{"lines":[148,149]},"content":"Constants: (c), (L), (n_{\\text{points}})","children":[]},{"type":"list_item","depth":6,"payload":{"lines":[149,150]},"content":"State initialization","children":[]},{"type":"list_item","depth":6,"payload":{"lines":[150,151]},"content":"Time evolution parameters: (dt), (time_{\\text{steps}})","children":[]},{"type":"list_item","depth":6,"payload":{"lines":[151,152]},"content":"Lagrangian terms computation","children":[]},{"type":"list_item","depth":6,"payload":{"lines":[152,153]},"content":"Update of (\\Phi) and (\\Psi) based on dynamics","children":[]},{"type":"list_item","depth":6,"payload":{"lines":[153,154]},"content":"Storage of history for plotting","children":[]},{"type":"list_item","depth":6,"payload":{"lines":[154,155]},"content":"Plotting of the evolution of (\\Phi_n) over time","children":[]}]}]}]},{"type":"heading","depth":3,"payload":{"lines":[156,157]},"content":"Constants","children":[{"type":"list_item","depth":4,"payload":{"lines":[158,159]},"content":"(c) (Speed of light): 1","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[159,160]},"content":"(L) (Inductance): 1","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[160,161]},"content":"(n_{\\text{points}}) (Number of qubits): 100","children":[]}]},{"type":"heading","depth":3,"payload":{"lines":[162,163]},"content":"State Initialization","children":[{"type":"list_item","depth":4,"payload":{"lines":[164,165]},"content":"(\\Phi_n): Array of zeros with length (n_{\\text{points}})","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[165,166]},"content":"(\\dot{\\Phi}<em>n): Array of zeros with length (n</em>{\\text{points}})","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[166,167]},"content":"(\\Psi_n): Array of zeros with length (n_{\\text{points}})","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[167,168]},"content":"(\\dot{\\Psi}<em>n): Array of zeros with length (n</em>{\\text{points}})","children":[]}]},{"type":"heading","depth":3,"payload":{"lines":[169,170]},"content":"Time Evolution Parameters","children":[{"type":"list_item","depth":4,"payload":{"lines":[171,172]},"content":"(dt) (Time step): 0.01","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[172,173]},"content":"(time_{\\text{steps}}) (Number of time steps): 100","children":[]}]},{"type":"heading","depth":3,"payload":{"lines":[174,175]},"content":"Lagrangian Terms Computation","children":[{"type":"list_item","depth":4,"payload":{"lines":[176,177]},"content":"For each qubit (n):","children":[{"type":"list_item","depth":5,"payload":{"lines":[177,178]},"content":"Compute the Lagrangian terms:","children":[{"type":"list_item","depth":6,"payload":{"lines":[178,179]},"content":"Kinetic term: (\\left(\\frac{{\\dot{\\Phi}_n}}{{2c}}\\right)^2)","children":[]},{"type":"list_item","depth":6,"payload":{"lines":[179,180]},"content":"Potential term: (\\frac{{(\\Phi_n - \\Phi_{n-1} - \\tilde{\\Psi}_n)^2}}{{2L}})","children":[]}]}]}]},{"type":"heading","depth":3,"payload":{"lines":[181,182]},"content":"Update of (\\Phi) and (\\Psi) based on Dynamics","children":[{"type":"list_item","depth":4,"payload":{"lines":[183,184]},"content":"Update (\\dot{\\Phi}<em>n) by adding random noise: (\\text{np.random.normal}(0, 0.01, n</em>{\\text{points}}))","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[184,185]},"content":"Update (\\Phi_n) by adding (\\dot{\\Phi}_n \\times dt)","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[185,186]},"content":"Update (\\Psi_n) by adding (\\dot{\\Psi}_n \\times dt)","children":[]}]},{"type":"heading","depth":3,"payload":{"lines":[187,188]},"content":"Storage of History for Plotting","children":[{"type":"list_item","depth":4,"payload":{"lines":[189,190]},"content":"Store the values of (\\Phi_n) at each time step in a list called (\\text{Phi_history})","children":[]}]},{"type":"heading","depth":3,"payload":{"lines":[191,192]},"content":"Plotting","children":[{"type":"list_item","depth":4,"payload":{"lines":[193,194]},"content":"Create a figure with size (10, 6)","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[194,195]},"content":"Plot every 10th element of (\\text{Phi_history}) against the qubit index","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[195,196]},"content":"Label each plot with the corresponding timestep","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[196,197]},"content":"Set the x-axis label to "Qubit Index"","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[197,198]},"content":"Set the y-axis label to "(\\Phi_n)"","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[198,199]},"content":"Set the title to "Evolution of (\\Phi_n) over Time"","children":[]},{"type":"list_item","depth":4,"payload":{"lines":[199,200]},"content":"Display a legend","children":[]}]}]}]}],"payload":{}},{})</script>
</body>
</html>