-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgenerate_neurons.py
109 lines (93 loc) · 4.04 KB
/
generate_neurons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
## Generate On-Center/Off-Sourround receptive fields
import numpy as np
import scipy.stats as sps
from scipy.stats import chi
import matplotlib.pyplot as plt
def generate_neurons(N,#number of neurons
s=48,#width=heigth of stimulus
s2=17,#width=heigth of Receptive fields
centering=True,#whether to center neuron on a pixel (or between)
target_mean_count=.1,#mean output
variation=0,#between neurons of same type
types=1,#adjust the mean of the type
np_seed=None):#Numpy seed
#set np random seed
np.random.seed(np_seed)
#Output
#rf - Receptive fields of N neurons
#rf_cen - true kernel that generated them
#GT_loc - true location
#vary the following parameters by +/- 10%:
#center size, surround size, center weight, surround weight, aspect ratio
#from bc paper (franke et al,2017)
#width: max diff between types: 1.5629, max var within type: 0.2341
#heigth: max diff between types: 1.5044, max var within type: 0.2275
s2=np.int((s2-1)/2)
rf=np.zeros([N,s**2])
rf_cen=np.zeros([N,(2*s2+1)**2])
GT_loc=np.zeros([N,2])
RF = np.zeros((N,s*s))#neurons receptive fields
for n in range(N):
if n%100==0:
print('generate neurons %s finished'%(n/N))
x2 = np.linspace(-s2, s2, 2*s2+1)
y2 = np.linspace(-s2, s2, 2*s2+1)
tmp_rf=np.zeros([s2*2+1,s2*2+1])
#aspect ratio
ar=np.random.uniform(1-variation,1+variation)
#Center size
c11=ar*np.random.uniform(1-variation,1+variation)/4*types
c22=c11/ar**2
#surround size
s11=ar*np.random.uniform(1-variation,1+variation)*types
s22=s11/ar**2
#rotations - if variation is desired
if variation != 0:
tmp1=np.random.uniform(-.3,.3)
else:
tmp1=0
tmp2=np.random.choice([0,1],2,replace=False)
c12=[tmp1*np.min([c11,c22]),-tmp1*np.min([c11,c22])][tmp2[0]]
c21=[tmp1*np.min([c11,c22]),-tmp1*np.min([c11,c22])][tmp2[1]]
s12=[tmp1*np.min([s11,s22]),-tmp1*np.min([s11,s22])][tmp2[0]]
s21=[tmp1*np.min([s11,s22]),-tmp1*np.min([s11,s22])][tmp2[1]]
#center weight
cw=np.random.uniform(1-variation,1+variation)
#surround weight
sw=cw*2#np.random.uniform(1-variation,1+variation)*2
#covariance matrices
ccov=s2*np.array([[c11,c12],[c21,c22]])
scov=s2*np.array([[s11,s12],[s21,s22]])
#not centering on pixels?
if centering:
center=[0,0]
else:
center=np.random.uniform(-.5,.5,2)
#DoGs...
for x in x2:
for y in y2:
tmp_rf[np.int(x)+s2,np.int(y)+s2]=cw*(sps.multivariate_normal.pdf([x,y],
center,ccov) - sw*sps.multivariate_normal.pdf([x,y],center,scov))
#shifting in space...
tmp_cen=tmp_rf
raw_mean_count = chi.mean(1, scale=np.sqrt(np.sum(tmp_cen ** 2)))
tmp_cen *= target_mean_count / raw_mean_count
rf_cen[n,:]=tmp_cen.flatten()
centre=np.random.choice(s-2*s2,2)
tmp_rf=np.vstack([np.zeros([centre[0],2*s2+1]),tmp_rf,np.zeros([s-2*s2-1-centre[0],2*s2+1])])
tmp_rf=np.hstack([np.zeros([s,centre[1]]),tmp_rf,np.zeros([s,s-2*s2-1-centre[1]])])
GT_loc[n,:]=centre+center#coordinates of true location
#normalize all by the same amount(i.e. any neuron when RF is fully inside):
raw_mean_count = chi.mean(1, scale=np.sqrt(np.sum(tmp_rf ** 2)))
tmp_rf = tmp_rf * target_mean_count / raw_mean_count
rf[n,:]=tmp_rf.flatten()
return rf,rf_cen,GT_loc
def visualize(rf,show=3):
s=np.int(np.sqrt(rf.shape[1]))
for i in range(show**2):
plt.subplot(show,show,i+1)
plt.imshow(rf[i,:].reshape(s,s),cmap='bwr',vmin=-max(abs(rf[i,:])), vmax=max(abs(rf[i,:])))
frame1 = plt.gca()
frame1.axes.get_xaxis().set_visible(False)
frame1.axes.get_yaxis().set_visible(False)
plt.show()