-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_gradnorm.py
122 lines (91 loc) · 4.28 KB
/
test_gradnorm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import unittest
import torch
from torch import nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import pytorch_lightning as pl
from gradnorm import GradNorm
pl.seed_everything(135)
class ToyModel(nn.Module):
def __init__(self, T, input_dim=250, hidden_dim=100, output_dim=100):
super().__init__()
# Common trunk: 4-layer fully-connected ReLU-activated network
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, hidden_dim)
self.fc4 = nn.Linear(hidden_dim, hidden_dim)
# Final affine transformation layer
self.heads = nn.ModuleList([nn.Linear(hidden_dim, output_dim) for _ in range(T)])
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = F.relu(self.fc4(x))
return torch.stack([head(x) for head in self.heads], dim=1)
@property
def last_shared_layer(self):
return self.fc4
class ToyDataset(torch.utils.data.Dataset):
def __init__(self, num_tasks=10, sigmas=[48, 3, 54, 16, 9, 30, 52, 26, 47, 81], num_samples=10000, input_dim=250, hidden_dim=100):
super().__init__()
# Dataset
self.sigmas = torch.tensor(sigmas).float() # Scaling factors for each task
B = torch.normal(mean=0., std=10., size=(input_dim, hidden_dim))
epsilons = torch.normal(mean=0., std=3.5, size=(len(self.sigmas), input_dim, hidden_dim))
self.x = torch.rand(num_samples, input_dim)
self.ys = torch.stack([self.sigmas[i] * torch.tanh(self.x @ (B + epsilons[i])) for i in range(len(self.sigmas))], axis=1)
def __len__(self):
return len(self.x)
def __getitem__(self, idx):
return self.x[idx], self.ys[idx]
class TestGradNorm(unittest.TestCase):
def setUp(self):
self.device = 'mps'
self.T = 2
self.model = ToyModel(T=self.T).to(self.device)
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=5e-4)
self.gradnorm = GradNorm(self.model.last_shared_layer, alpha=0.12, number_of_tasks=self.T, lr=1e-3, device=self.device)
self.w_i_history = [] # Store w_i values at each step
# Toy data
batch_size = 100
self.dataset = ToyDataset(num_tasks=self.T, sigmas=[1, 100])
self.dataloader = torch.utils.data.DataLoader(self.dataset, batch_size=batch_size, shuffle=True)
def test_gradnorm(self):
for epoch in range(250):
for step, (x, y_true) in enumerate(self.dataloader):
x, y_true = x.to(self.device), y_true.to(self.device)
y_pred = self.model(x)
# Calculate losses for each task
task_losses = F.mse_loss(y_pred, y_true, reduction='none').mean(dim=-1)
L_i = task_losses.mean(dim=0)
L = torch.sum(self.gradnorm.w_i * L_i)
self.optimizer.zero_grad()
L.backward(retain_graph=True)
# Compute the GradNorm loss
L_grad = self.gradnorm.gradnorm(L_i)
# Apply gradients from the GradNorm loss and the total loss
self.gradnorm.apply_grads(L_grad)
self.optimizer.step()
# Store w_i at each step
self.w_i_history.append(self.gradnorm.w_i.clone().detach())
# Log progress (optional, for monitoring during training)
if epoch % 10 == 0:
print(f"Epoch {epoch}, Loss: {L.item()}, L_grad: {L_grad.item()}, w_i: {self.gradnorm.w_i.data}")
# Plot w_i values
self.plot_w_i_history()
def plot_w_i_history(self):
w_i_history = torch.stack(self.w_i_history)
plt.figure(figsize=(16, 12))
for i in range(self.T):
plt.plot(w_i_history[:, i].numpy(), lw=3, label=f'σ = {self.dataset.sigmas[i]}')
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.xlim(0, 28000)
plt.xlabel("Iters", fontsize=18)
plt.ylabel("w_i", fontsize=18)
plt.title("Adaptive Weights During Training for Each Task", fontsize=18)
plt.legend(fontsize=12)
plt.tight_layout()
plt.savefig('w_i_history.png')
if __name__ == '__main__':
unittest.main()