-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgradnorm.py
96 lines (75 loc) · 3.8 KB
/
gradnorm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch
from torch import nn
import torch.nn.functional as F
class GradNorm:
"""
GradNorm implementation designed for maximal compatibility with PyTorch training frameworks.
API for this GradNorm implementation:
1. Initialize the GradNorm class with the model, alpha, and number of tasks
2. Compute your task losses, as you would normally, store in a tensor of shape [T]
3. Apply gradnorm, passing losses as input; w_i updated automatically
4. Perform backpropagation to your model as usual
"""
def __init__(self, layer: nn.Module, alpha: float, number_of_tasks: int, lr: float = None, lr_warmup: float = None, device: str = "cpu"):
"""
Initialize the GradNorm class.
:param layer: The multitask learning layer shared by all tasks.
:param alpha: The GradNorm alpha parameter, higher if tasks are more different.
:param number_of_tasks: Number of tasks in the multitask learning model.
"""
self.layer = layer
self.alpha = alpha
self.T = number_of_tasks
self.device = torch.device(device)
self.w_i = torch.nn.Parameter(torch.ones(self.T, device=self.device), requires_grad=True) # Step 1: Initialize task weights
self.L_i_0 = None # Placeholder for the initial losses
self.lr = lr
self.lr_warmup = lr_warmup
self.warmup_step = 1
def gradnorm(self, L_i: torch.Tensor, layer: nn.Module = None) -> torch.Tensor:
"""
Compute the GradNorm loss.
:param task_losses: A tensor of losses, one for each task.
:return: The GradNorm loss.
"""
if layer is None:
layer = self.layer
assert layer is not None and isinstance(layer, nn.Module), "Must provide a layer to compute the GradNorm loss."
# Step 2: Save the initial losses for each task if not already saved
if self.L_i_0 is None:
self.L_i_0 = L_i.detach()
# Step 3: Compute gradient norms for each task and the average gradient norm
G_W_i = torch.stack([
torch.autograd.grad(L_i[i] * self.w_i[i], layer.parameters(), retain_graph=True,
create_graph=True)[0].norm()
for i in range(self.T)])
G_W_bar = torch.mean(G_W_i)
# Step 4: Compute relative inverse training rates r_i(t)
tilde_L_i = L_i / self.L_i_0
r_i = tilde_L_i / torch.mean(tilde_L_i)
# Step 5: Calculate the GradNorm loss L_grad
target_G_W_i = (G_W_bar * torch.pow(r_i, self.alpha)).detach()
L_grad = F.l1_loss(G_W_i, target_G_W_i)
return L_grad
def apply_grads(self, L_grad: torch.Tensor, lr: float = None) -> torch.Tensor:
"""
Apply the gradients from the GradNorm loss and the total loss.
:param optimizer: The optimizer for the model parameters.
:param lr: Optional learning rate for updating task weights.
:return: The updated task weights.
"""
if lr is None:
lr = self.lr
if self.lr_warmup is not None:
lr = lr * min(1., float(self.warmup_step) / self.lr_warmup)
self.warmup_step += 1
assert lr is not None, "Must provide a learning rate to apply_grads."
# Step 6: Differentiate L_grad with respect to task weights w_i and update
self.w_i.grad = torch.autograd.grad(L_grad, self.w_i)[0]
self.w_i.data -= lr * self.w_i.grad
# # Step 7: Renormalize task weights w_i
self.w_i.data = self.w_i / torch.sum(self.w_i) * self.T
if torch.any(self.w_i < 0):
print("Negative w_i values detected. Consider reducing the gradnorm learning rate.")
self.w_i.data = torch.clamp(self.w_i.data, min=1e-8)
return self.w_i