Skip to content

Latest commit

 

History

History
 
 

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Audio search system

This project uses PANNs(Large-Scale Pretrained Audio Neural Networks) for Audio Pattern Recognition to perform audio tagging and sound event detection, finally obtaining audio embeddings. Then this project uses Milvus to search for similar audio clips.

Local Deployment

Deploy with Docker Compose

The molecular similarity search system requires Milvus, MySQL, Webserver and Webclient services. We can start these containers with one click through docker-compose.yaml, so please make sure you have installed Docker Engine and Docker Compose before running.

$ git clone https://github.com/milvus-io/bootcamp.git
$ cd solutions/audio/audio_similarity_search/quick_deploy
$ docker-compose -f audiosearch-docker-compose.yaml up -d

Then you will see the that all containers are created.

Creating network "quick_deploy_app_net" with driver "bridge"
Creating milvus-minio    ... done
Creating audio-webclient   ... done
Creating milvus-etcd     ... done
Creating audio-mysql       ... done
Creating milvus-standalone ... done
Creating audio-webserver   ... done

And show all containers with docker ps, and you can use docker logs audio-webserver to get the logs of server container.

CONTAINER ID   IMAGE                                         COMMAND                  CREATED          STATUS                             PORTS                                                  NAMES
a8428e99f49d   milvusbootcamp/audio-search-server:2.0        "/bin/sh -c 'python3…"   28 seconds ago   Up 24 seconds                      0.0.0.0:8002->8002/tcp, :::8002->8002/tcp              audio-webserver
5391a8ebc3a0   milvusdb/milvus:v2.0.0-rc8-20211104-d1f4106   "/tini -- milvus run…"   33 seconds ago   Up 28 seconds                      0.0.0.0:19530->19530/tcp, :::19530->19530/tcp          milvus-standalone
1d1f70f98735   minio/minio:RELEASE.2020-12-03T00-03-10Z      "/usr/bin/docker-ent…"   38 seconds ago   Up 33 seconds (healthy)            9000/tcp                                               milvus-minio
8f4cfeba5953   quay.io/coreos/etcd:v3.5.0                    "etcd -advertise-cli…"   38 seconds ago   Up 33 seconds                      2379-2380/tcp                                          milvus-etcd
209563de4c12   mysql:5.7                                     "docker-entrypoint.s…"   38 seconds ago   Up 29 seconds                      0.0.0.0:3306->3306/tcp, :::3306->3306/tcp, 33060/tcp   audio-mysql
f4a6b30f5840   milvusbootcamp/audio-search-client:2.0        "/bin/bash -c '/usr/…"   38 seconds ago   Up 31 seconds (health: starting)   0.0.0.0:801->80/tcp, :::801->80/tcp                    audio-webclient

Deploy with source code

Actually we recommend using Docker Compose to deploy the audio similarity search system. If you want to run from source code, you must manually start Milvus and Mysql. Next show you how to run the API server and Client.

1. Start API Server

Then to start the system server, and it provides HTTP backend services.

  • Install the Python packages
$ git clone https://github.com/milvus-io/bootcamp.git
$ cd solutions/audio_similarity_search/quick_deploy/server
$ pip install -r requirements.txt
  • Set configuration
$ vim src/config.py

Modify the parameters according to your own environment. Here listing some parameters that need to be set, for more information please refer to config.py.

Parameter Description Default setting
MILVUS_HOST The IP address of Milvus, you can get it by ifconfig. If running everything on one machine, most likely 127.0.0.1 127.0.0.1
MILVUS_PORT Port of Milvus. 19530
VECTOR_DIMENSION Dimension of the vectors. 2048
MYSQL_HOST The IP address of Mysql. 127.0.0.1
MYSQL_PORT Port of Milvus. 3306
DEFAULT_TABLE The milvus and mysql default collection name. audiotable
  • Run the code

Then start the server with Fastapi.

$ python src/main.py
  • API Docs

After starting the service, Please visit 127.0.0.1:8002/docs in your browser to view all the APIs.

/data

Returns the audio file from the server at the specified file path.

/progress

Returns data processing progress.

/audio/load

Loads audio files at the specified filepath into the system to be made available for searching.

/audio/search

Upload a specified file to the system, then conduct a search for similar audio files and return results.

/audio/count

Returns the number of audio files in the system available for searching.

/audio/drop

Drops Milvus and MySQL tables, removing loaded data.

2. Start Client

Next, start the frontend GUI.

  • Set parameters

Modify the parameters according to your own environment.

Parameter Description example
API_HOST The IP address of the backend server. 127.0.0.1
API_PORT The port of the backend server. 8002
$ export API_HOST='127.0.0.1'
$ export API_PORT='8002'
  • Run Docker

First, build the docker image from the Dockerfile.

$ docker run -d \
-p 80:80 \
-e "API_URL=http://${API_HOST}:${API_PORT}" \
 milvusbootcamp/audio-search-client:2.0

Refer to the instructions in the Client Readme.

How to use front-end

Navigate to 127.0.0.1:80 in your browser to access the front-end interface.

  • Insert data

Download and unzip the extract .wav sound files to the specified data directory. Next, enter the path /audio_data in the frontend GUI to initiate the upload.

The data directory is the path where the data is locally mounted to the webserver docker, and /audio_data is the path inside the docker, so we are supposed to fill in the path in the docker, namely /audio_data.

  • Search for similar audio clips

Select the magnifying glass icon on the left side of the interface. Then, press the "Default Target Audio File" button and upload a .wav sound file you'd like to search. Results will be displayed.

Code structure

If you are interested in our code or would like to contribute code, feel free to learn more about our code structure.

└───server
│   │   Dockerfile
│   │   requirements.txt
│   │   main.py  # File for starting the program.
│   │
│   └───src
│       │   config.py  # Configuration file.
│       │   encode.py  # Covert image/video/questions/audio... to embeddings.
│       │   milvus_helpers.py  # Connect to Milvus server and insert/drop/query vectors in Milvus.
│       │   mysql_helpers.py   # Connect to MySQL server, and add/delete/query IDs and object information.
│       │   
│       └───operations # Call methods in milvus.py and mysql.py to insert/query/delete objects.
│               │   insert.py
│               │   query.py
│               │   delete.py
│               │   count.py