-
Notifications
You must be signed in to change notification settings - Fork 23
/
train.py
393 lines (339 loc) · 22.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
#!/usr/bin/env python
import os
from datetime import datetime
import time
import tensorflow as tf
import numpy as np
import sys
import select
from IPython import embed
from StringIO import StringIO
import matplotlib.pyplot as plt
import cifar100
import resnet
# Dataset Configuration
tf.app.flags.DEFINE_string('data_dir', './cifar100/train_val_split', """Path to the CIFAR-100 data.""")
tf.app.flags.DEFINE_integer('num_classes', 100, """Number of classes in the dataset.""")
tf.app.flags.DEFINE_integer('num_train_instance', 45000, """Number of training images.""")
tf.app.flags.DEFINE_integer('num_val_instance', 5000, """Number of val images.""")
# Network Configuration
tf.app.flags.DEFINE_integer('batch_size', 90, """Number of images to process in a batch.""")
tf.app.flags.DEFINE_integer('num_residual_units', 2, """Number of residual block per group.
Total number of conv layers will be 6n+4""")
tf.app.flags.DEFINE_integer('k', 8, """Network width multiplier""")
tf.app.flags.DEFINE_integer('ngroups1', 1, """Grouping number on logits""")
tf.app.flags.DEFINE_integer('ngroups2', 1, """Grouping number on unit_3_x""")
tf.app.flags.DEFINE_integer('ngroups3', 1, """Grouping number on unit_2_x""")
# Optimization Configuration
tf.app.flags.DEFINE_float('l2_weight', 0.0001, """L2 loss weight applied all the weights""")
tf.app.flags.DEFINE_float('gamma1', 0.0, """split loss regularization paramter""")
tf.app.flags.DEFINE_float('gamma2', 0.0, """overlap loss regularization parameter""")
tf.app.flags.DEFINE_float('gamma3', 0.0, """uniform loss regularization parameter""")
tf.app.flags.DEFINE_float('dropout_keep_prob', 1.0, """probability of dropouts on the split layers(1.0 not to use dropout)""")
tf.app.flags.DEFINE_float('momentum', 0.9, """The momentum of MomentumOptimizer""")
tf.app.flags.DEFINE_boolean('bn_no_scale', False, """Whether not to use trainable gamma in BN layers.""")
tf.app.flags.DEFINE_boolean('weighted_group_loss', False, """Whether to normalize weight split loss where coeffs are propotional to its values.""")
tf.app.flags.DEFINE_float('initial_lr', 0.1, """Initial learning rate""")
tf.app.flags.DEFINE_string('lr_step_epoch', "80.0,120.0,160.0", """Epochs after which learing rate decays""")
tf.app.flags.DEFINE_float('lr_decay', 0.1, """Learning rate decay factor""")
tf.app.flags.DEFINE_boolean('finetune', False, """Whether to finetune.""")
# Training Configuration
tf.app.flags.DEFINE_string('train_dir', './train', """Directory where to write log and checkpoint.""")
tf.app.flags.DEFINE_integer('max_steps', 100000, """Number of batches to run.""")
tf.app.flags.DEFINE_integer('display', 100, """Number of iterations to display training info.""")
tf.app.flags.DEFINE_integer('val_interval', 1000, """Number of iterations to run a val""")
tf.app.flags.DEFINE_integer('val_iter', 100, """Number of iterations during a val""")
tf.app.flags.DEFINE_integer('checkpoint_interval', 10000, """Number of iterations to save parameters as a checkpoint""")
tf.app.flags.DEFINE_integer('group_summary_interval', 2500, """Number of iterations to plot grouping variables and weights""")
tf.app.flags.DEFINE_float('gpu_fraction', 0.95, """The fraction of GPU memory to be allocated""")
tf.app.flags.DEFINE_boolean('log_device_placement', False, """Whether to log device placement.""")
tf.app.flags.DEFINE_string('basemodel', None, """Base model to load paramters""")
tf.app.flags.DEFINE_string('checkpoint', None, """Model checkpoint to load""")
FLAGS = tf.app.flags.FLAGS
def get_lr(initial_lr, lr_decay, lr_decay_steps, global_step):
lr = initial_lr
for s in lr_decay_steps:
if global_step >= s:
lr *= lr_decay
return lr
def train():
print('[Dataset Configuration]')
print('\tCIFAR-100 dir: %s' % FLAGS.data_dir)
print('\tNumber of classes: %d' % FLAGS.num_classes)
print('\tNumber of training images: %d' % FLAGS.num_train_instance)
print('\tNumber of val images: %d' % FLAGS.num_val_instance)
print('[Network Configuration]')
print('\tBatch size: %d' % FLAGS.batch_size)
print('\tResidual blocks per group: %d' % FLAGS.num_residual_units)
print('\tNetwork width multiplier: %d' % FLAGS.k)
print('\tNumber of Groups: %d-%d-%d' % (FLAGS.ngroups3, FLAGS.ngroups2, FLAGS.ngroups1))
print('\tBasemodel file: %s' % FLAGS.basemodel)
print('[Optimization Configuration]')
print('\tL2 loss weight: %f' % FLAGS.l2_weight)
print('\tOverlap loss weight: %f' % FLAGS.gamma1)
print('\tWeight split loss weight: %f' % FLAGS.gamma2)
print('\tUniform loss weight: %f' % FLAGS.gamma3)
print('\tDropout keep probability: %f' % FLAGS.dropout_keep_prob)
print('\tThe momentum optimizer: %f' % FLAGS.momentum)
print('\tNo update on BN scale parameter: %d' % FLAGS.bn_no_scale)
print('\tWeighted split loss: %d' % FLAGS.weighted_group_loss)
print('\tInitial learning rate: %f' % FLAGS.initial_lr)
print('\tEpochs per lr step: %s' % FLAGS.lr_step_epoch)
print('\tLearning rate decay: %f' % FLAGS.lr_decay)
print('\tFinetune: %d' % FLAGS.finetune)
print('[Training Configuration]')
print('\tTrain dir: %s' % FLAGS.train_dir)
print('\tTraining max steps: %d' % FLAGS.max_steps)
print('\tSteps per displaying info: %d' % FLAGS.display)
print('\tSteps per validation: %d' % FLAGS.val_interval)
print('\tSteps during validation: %d' % FLAGS.val_iter)
print('\tSteps per saving checkpoints: %d' % FLAGS.checkpoint_interval)
print('\tSteps per plot splits: %d' % FLAGS.group_summary_interval)
print('\tGPU memory fraction: %f' % FLAGS.gpu_fraction)
print('\tLog device placement: %d' % FLAGS.log_device_placement)
with tf.Graph().as_default():
init_step = 0
global_step = tf.Variable(0, trainable=False, name='global_step')
# Get images and labels of CIFAR-100
print('Load CIFAR-100 dataset')
train_dataset_path = os.path.join(FLAGS.data_dir, 'train')
val_dataset_path = os.path.join(FLAGS.data_dir, 'val')
print('\tLoading training data from %s' % train_dataset_path)
with tf.variable_scope('train_image'):
cifar100_train = cifar100.CIFAR100Runner(train_dataset_path, image_per_thread=32,
shuffle=True, distort=True, capacity=10000)
train_images, train_labels = cifar100_train.get_inputs(FLAGS.batch_size)
print('\tLoading validation data from %s' % val_dataset_path)
with tf.variable_scope('val_image'):
cifar100_val = cifar100.CIFAR100Runner(val_dataset_path, image_per_thread=32,
shuffle=False, distort=False, capacity=5000)
# shuffle=False, distort=False, capacity=10000)
val_images, val_labels = cifar100_val.get_inputs(FLAGS.batch_size)
# Build a Graph that computes the predictions from the inference model.
images = tf.placeholder(tf.float32, [FLAGS.batch_size, cifar100.IMAGE_SIZE, cifar100.IMAGE_SIZE, 3])
labels = tf.placeholder(tf.int32, [FLAGS.batch_size])
# Build model
lr_decay_steps = map(float,FLAGS.lr_step_epoch.split(','))
lr_decay_steps = map(int,[s*FLAGS.num_train_instance/FLAGS.batch_size for s in lr_decay_steps])
with tf.device('/GPU:0'):
hp = resnet.HParams(batch_size=FLAGS.batch_size,
num_classes=FLAGS.num_classes,
num_residual_units=FLAGS.num_residual_units,
k=FLAGS.k,
weight_decay=FLAGS.l2_weight,
ngroups1=FLAGS.ngroups1,
ngroups2=FLAGS.ngroups2,
ngroups3=FLAGS.ngroups3,
gamma1=FLAGS.gamma1,
gamma2=FLAGS.gamma2,
gamma3=FLAGS.gamma3,
dropout_keep_prob=FLAGS.dropout_keep_prob,
momentum=FLAGS.momentum,
bn_no_scale=FLAGS.bn_no_scale,
weighted_group_loss=FLAGS.weighted_group_loss,
finetune=FLAGS.finetune)
network = resnet.ResNet(hp, images, labels, global_step)
network.build_model()
network.build_train_op()
print('Number of Weights: %d' % network._weights)
print('FLOPs: %d' % network._flops)
train_summary_op = tf.summary.merge_all() # Summaries(training)
# Build an initialization operation to run below.
init = tf.global_variables_initializer()
# Start running operations on the Graph.
sess = tf.Session(config=tf.ConfigProto(
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu_fraction),
allow_soft_placement=True,
log_device_placement=FLAGS.log_device_placement))
sess.run(init)
# Create a saver.
saver = tf.train.Saver(tf.global_variables(), max_to_keep=10000)
if FLAGS.checkpoint is not None:
saver.restore(sess, FLAGS.checkpoint)
init_step = global_step.eval(session=sess)
print('Load checkpoint %s' % FLAGS.checkpoint)
elif FLAGS.basemodel:
# Define a different saver to load model checkpoints
# Select only base variables (exclude split layers)
print('Load parameters from basemodel %s' % FLAGS.basemodel)
variables = tf.global_variables()
vars_restore = [var for var in variables
if not "Momentum" in var.name and
not "group" in var.name and
not "global_step" in var.name]
# vars_restore = [var for var in variables
# if not "alpha" in var.name and
# not "fc_beta" in var.name and
# not "unit_3" in var.name and
# not "unit_last" in var.name and
# not "logits" in var.name and
# not "Momentum" in var.name and
# not "global_step" in var.name]
saver_restore = tf.train.Saver(vars_restore, max_to_keep=10000)
saver_restore.restore(sess, FLAGS.basemodel)
else:
print('No checkpoint file of basemodel found. Start from the scratch.')
# Start queue runners & summary_writer
cifar100_train.start_threads(sess, n_threads=20)
cifar100_val.start_threads(sess, n_threads=1)
if not os.path.exists(FLAGS.train_dir):
os.mkdir(FLAGS.train_dir)
summary_writer = tf.summary.FileWriter(os.path.join(FLAGS.train_dir, str(global_step.eval(session=sess))),
sess.graph)
# Training!
val_best_acc = 0.0
for step in xrange(init_step, FLAGS.max_steps):
# val
if step % FLAGS.val_interval == 0:
val_loss, val_acc = 0.0, 0.0
for i in range(FLAGS.val_iter):
val_images_val, val_labels_val = sess.run([val_images, val_labels])
loss_value, acc_value = sess.run([network.loss, network.acc],
feed_dict={network.is_train:False, images:val_images_val, labels:val_labels_val})
val_loss += loss_value
val_acc += acc_value
val_loss /= FLAGS.val_iter
val_acc /= FLAGS.val_iter
val_best_acc = max(val_best_acc, val_acc)
format_str = ('%s: (val) step %d, loss=%.4f, acc=%.4f')
print (format_str % (datetime.now(), step, val_loss, val_acc))
val_summary = tf.Summary()
val_summary.value.add(tag='val/loss', simple_value=val_loss)
val_summary.value.add(tag='val/acc', simple_value=val_acc)
val_summary.value.add(tag='val/best_acc', simple_value=val_best_acc)
summary_writer.add_summary(val_summary, step)
summary_writer.flush()
# Train
lr_value = get_lr(FLAGS.initial_lr, FLAGS.lr_decay, lr_decay_steps, step)
start_time = time.time()
train_images_val, train_labels_val = sess.run([train_images, train_labels])
_, loss_value, acc_value, train_summary_str = \
sess.run([network.train_op, network.loss, network.acc, train_summary_op],
feed_dict={network.is_train:True, network.lr:lr_value, images:train_images_val, labels:train_labels_val})
duration = time.time() - start_time
assert not np.isnan(loss_value)
# Display & Summary(training)
if step % FLAGS.display == 0:
num_examples_per_step = FLAGS.batch_size
examples_per_sec = num_examples_per_step / duration
sec_per_batch = float(duration)
format_str = ('%s: (Training) step %d, loss=%.4f, acc=%.4f, lr=%f (%.1f examples/sec; %.3f '
'sec/batch)')
print (format_str % (datetime.now(), step, loss_value, acc_value, lr_value,
examples_per_sec, sec_per_batch))
summary_writer.add_summary(train_summary_str, step)
# Save the model checkpoint periodically.
if (step > init_step and step % FLAGS.checkpoint_interval == 0) or (step + 1) == FLAGS.max_steps:
checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=step)
if sys.stdin in select.select([sys.stdin], [], [], 0)[0]:
char = sys.stdin.read(1)
if char == 'b':
embed()
# Plot grouped weight matrices as image summary
filters = [16, 16 * FLAGS.k, 32 * FLAGS.k, 64 * FLAGS.k]
if FLAGS.group_summary_interval is not None:
if step % FLAGS.group_summary_interval == 0:
img_summaries = []
if FLAGS.ngroups1 > 1:
logits_weights = get_var_value('logits/fc/weights', sess)
split_p1 = softmax(get_var_value('group/split_p1/alpha', sess))
split_q1 = softmax(get_var_value('group/split_q1/alpha', sess))
feature_indices = np.argsort(np.argmax(split_p1, axis=0))
class_indices = np.argsort(np.argmax(split_q1, axis=0))
img_summaries.append(img_to_summary(np.repeat(split_p1[:, feature_indices], 20, axis=0), 'split_p1'))
img_summaries.append(img_to_summary(np.repeat(split_q1[:, class_indices], 20, axis=0), 'split_q1'))
img_summaries.append(img_to_summary(np.abs(logits_weights[feature_indices, :][:, class_indices]), 'logits'))
if FLAGS.ngroups2 > 1:
unit_3_0_shortcut = get_var_value('unit_3_0/shortcut/kernel', sess)
unit_3_0_conv_1 = get_var_value('unit_3_0/conv_1/kernel', sess)
unit_3_0_conv_2 = get_var_value('unit_3_0/conv_2/kernel', sess)
unit_3_1_conv_1 = get_var_value('unit_3_1/conv_1/kernel', sess)
unit_3_1_conv_2 = get_var_value('unit_3_1/conv_2/kernel', sess)
split_p2 = softmax(get_var_value('group/split_p2/alpha', sess))
split_q2 = _merge_split_q(split_p1, _get_even_merge_idxs(FLAGS.ngroups1, FLAGS.ngroups2))
split_r21 = softmax(get_var_value('group/split_r21/alpha', sess))
split_r22 = softmax(get_var_value('group/split_r22/alpha', sess))
feature_indices1 = np.argsort(np.argmax(split_p2, axis=0))
feature_indices2 = np.argsort(np.argmax(split_q2, axis=0))
feature_indices3 = np.argsort(np.argmax(split_r21, axis=0))
feature_indices4 = np.argsort(np.argmax(split_r22, axis=0))
unit_3_0_shortcut_img = np.abs(unit_3_0_shortcut[:,:,feature_indices1,:][:,:,:,feature_indices2].transpose([2,0,3,1]).reshape(filters[2], filters[3]))
unit_3_0_conv_1_img = np.abs(unit_3_0_conv_1[:,:,feature_indices1,:][:,:,:,feature_indices3].transpose([2,0,3,1]).reshape(filters[2] * 3, filters[3] * 3))
unit_3_0_conv_2_img = np.abs(unit_3_0_conv_2[:,:,feature_indices3,:][:,:,:,feature_indices2].transpose([2,0,3,1]).reshape(filters[3] * 3, filters[3] * 3))
unit_3_1_conv_1_img = np.abs(unit_3_1_conv_1[:,:,feature_indices2,:][:,:,:,feature_indices4].transpose([2,0,3,1]).reshape(filters[3] * 3, filters[3] * 3))
unit_3_1_conv_2_img = np.abs(unit_3_1_conv_2[:,:,feature_indices4,:][:,:,:,feature_indices2].transpose([2,0,3,1]).reshape(filters[3] * 3, filters[3] * 3))
img_summaries.append(img_to_summary(np.repeat(split_p2[:, feature_indices1], 20, axis=0), 'split_p2'))
img_summaries.append(img_to_summary(np.repeat(split_r21[:, feature_indices3], 20, axis=0), 'split_r21'))
img_summaries.append(img_to_summary(np.repeat(split_r22[:, feature_indices4], 20, axis=0), 'split_r22'))
img_summaries.append(img_to_summary(unit_3_0_shortcut_img, 'unit_3_0/shortcut_kernel'))
img_summaries.append(img_to_summary(unit_3_0_conv_1_img, 'unit_3_0/conv_1_kernel'))
img_summaries.append(img_to_summary(unit_3_0_conv_2_img, 'unit_3_0/conv_2_kernel'))
img_summaries.append(img_to_summary(unit_3_1_conv_1_img, 'unit_3_1/conv_1_kernel'))
img_summaries.append(img_to_summary(unit_3_1_conv_2_img, 'unit_3_1/conv_2_kernel'))
if FLAGS.ngroups3 > 1:
unit_2_0_shortcut = get_var_value('unit_2_0/shortcut/kernel', sess)
unit_2_0_conv_1 = get_var_value('unit_2_0/conv_1/kernel', sess)
unit_2_0_conv_2 = get_var_value('unit_2_0/conv_2/kernel', sess)
unit_2_1_conv_1 = get_var_value('unit_2_1/conv_1/kernel', sess)
unit_2_1_conv_2 = get_var_value('unit_2_1/conv_2/kernel', sess)
split_p3 = softmax(get_var_value('group/split_p3/alpha', sess))
split_q3 = _merge_split_q(split_p2, _get_even_merge_idxs(FLAGS.ngroups2, FLAGS.ngroups3))
split_r31 = softmax(get_var_value('group/split_r31/alpha', sess))
split_r32 = softmax(get_var_value('group/split_r32/alpha', sess))
feature_indices1 = np.argsort(np.argmax(split_p3, axis=0))
feature_indices2 = np.argsort(np.argmax(split_q3, axis=0))
feature_indices3 = np.argsort(np.argmax(split_r31, axis=0))
feature_indices4 = np.argsort(np.argmax(split_r32, axis=0))
unit_2_0_shortcut_img = np.abs(unit_2_0_shortcut[:,:,feature_indices1,:][:,:,:,feature_indices2].transpose([2,0,3,1]).reshape(filters[1], filters[2]))
unit_2_0_conv_1_img = np.abs(unit_2_0_conv_1[:,:,feature_indices1,:][:,:,:,feature_indices3].transpose([2,0,3,1]).reshape(filters[1] * 3, filters[2] * 3))
unit_2_0_conv_2_img = np.abs(unit_2_0_conv_2[:,:,feature_indices3,:][:,:,:,feature_indices2].transpose([2,0,3,1]).reshape(filters[2] * 3, filters[2] * 3))
unit_2_1_conv_1_img = np.abs(unit_2_1_conv_1[:,:,feature_indices2,:][:,:,:,feature_indices4].transpose([2,0,3,1]).reshape(filters[2] * 3, filters[2] * 3))
unit_2_1_conv_2_img = np.abs(unit_2_1_conv_2[:,:,feature_indices4,:][:,:,:,feature_indices2].transpose([2,0,3,1]).reshape(filters[2] * 3, filters[2] * 3))
img_summaries.append(img_to_summary(np.repeat(split_p3[:, feature_indices1], 20, axis=0), 'split_p3'))
img_summaries.append(img_to_summary(np.repeat(split_r31[:, feature_indices3], 20, axis=0), 'split_r31'))
img_summaries.append(img_to_summary(np.repeat(split_r32[:, feature_indices4], 20, axis=0), 'split_r32'))
img_summaries.append(img_to_summary(unit_2_0_shortcut_img, 'unit_2_0/shortcut_kernel'))
img_summaries.append(img_to_summary(unit_2_0_conv_1_img, 'unit_2_0/conv_1_kernel'))
img_summaries.append(img_to_summary(unit_2_0_conv_2_img, 'unit_2_0/conv_2_kernel'))
img_summaries.append(img_to_summary(unit_2_1_conv_1_img, 'unit_2_1/conv_1_kernel'))
img_summaries.append(img_to_summary(unit_2_1_conv_2_img, 'unit_2_1/conv_2_kernel'))
if img_summaries: # If not empty
img_summary = tf.Summary(value=img_summaries)
summary_writer.add_summary(img_summary, step)
summary_writer.flush()
def get_var_value(var_name, sess):
return [var for var in tf.global_variables() if var_name in var.name][0].eval(session=sess)
def softmax(logits, axis=0):
logits_diff = logits - np.max(logits, axis=axis, keepdims=True)
exps = np.exp(logits_diff)
return exps / np.sum(exps, axis=axis, keepdims=True)
def img_to_summary(img, tag="img"):
s = StringIO()
plt.imsave(s, img, cmap='bone', format='png')
summary = tf.Summary.Value(tag=tag,
image=tf.Summary.Image(encoded_image_string=s.getvalue(),
height=img.shape[0],
width=img.shape[1]))
return summary
def _merge_split_q(q, merge_idxs, name='merge'):
ngroups, dim = q.shape
max_idx = np.max(merge_idxs)
temp_list = []
for i in range(max_idx + 1):
temp = []
for j in range(ngroups):
if merge_idxs[j] == i:
temp.append(q[i,:])
temp_list.append(np.sum(temp, axis=0))
ret = np.array(temp_list)
return ret
def _get_even_merge_idxs(N, split):
assert N >= split
num_elems = [(N + split - i - 1)/split for i in range(split)]
expand_split = [[i] * n for i, n in enumerate(num_elems)]
return [t for l in expand_split for t in l]
def main(argv=None): # pylint: disable=unused-argument
train()
if __name__ == '__main__':
tf.app.run()