-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmst.py
232 lines (179 loc) · 6.86 KB
/
mst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import numpy as np
"""
Functions to get a Maximum Spanning Tree given a matrix of arc scores.
All this assumes a ROOT token to be at position 0!
Source: https://github.com/tdozat/Parser-v2/blob/master/parser/misc/mst.py
License: Apache 2.0
This code has been modified.
"""
def chu_liu_edmonds(probs):
"""The CLE algorithm"""
vertices = np.arange(len(probs))
edges = np.argmax(probs, axis=1)
cycles = find_cycles(edges)
if cycles:
# print("found cycle, fixing...")
cycle_vertices = cycles.pop() # (c)
non_cycle_vertices = np.delete(vertices, cycle_vertices) # (nc)
cycle_edges = edges[cycle_vertices] # (c)
# get rid of cycle nodes
non_cycle_probs = np.array(
probs[non_cycle_vertices, :][:, non_cycle_vertices]) # (nc x nc)
# add a node representing the cycle
# (nc+1 x nc+1)
non_cycle_probs = np.pad(non_cycle_probs, [[0, 1], [0, 1]], 'constant')
# probabilities of heads outside the cycle
# (c x nc) / (c x 1) = (c x nc)
backoff_cycle_probs = probs[cycle_vertices][:, non_cycle_vertices] / \
probs[cycle_vertices, cycle_edges][:, None]
# probability of a node inside the cycle depending on
# something outside the cycle
# max_0(c x nc) = (nc)
non_cycle_probs[-1, :-1] = np.max(backoff_cycle_probs, axis=0)
# probability of a node outside the cycle depending on
# something inside the cycle
# max_1(nc x c) = (nc)
non_cycle_probs[:-1, -1] = np.max(
probs[non_cycle_vertices][:, cycle_vertices], axis=1)
# (nc+1)
non_cycle_edges = chu_liu_edmonds(non_cycle_probs)
# This is the best source vertex into the cycle
non_cycle_root, non_cycle_edges = non_cycle_edges[-1], non_cycle_edges[:-1] # in (nc)
source_vertex = non_cycle_vertices[non_cycle_root] # in (v)
# This is the vertex in the cycle we want to change
cycle_root = np.argmax(backoff_cycle_probs[:, non_cycle_root]) # in (c)
target_vertex = cycle_vertices[cycle_root] # in (v)
edges[target_vertex] = source_vertex
# update edges with any other changes
mask = np.where(non_cycle_edges < len(non_cycle_probs) - 1)
edges[non_cycle_vertices[mask]] = non_cycle_vertices[non_cycle_edges[mask]]
mask = np.where(non_cycle_edges == len(non_cycle_probs) - 1)
# FIX
stuff = np.argmax(probs[non_cycle_vertices][:, cycle_vertices], axis=1)
stuff2 = cycle_vertices[stuff]
stuff3 = non_cycle_vertices[mask]
edges[stuff3] = stuff2[mask]
return edges
def greedy(probs):
"""
A simpler alternative to CLE algorithm.
Might give different performance.
"""
edges = np.argmax(probs, axis=1)
cycles = True
while cycles:
cycles = find_cycles(edges)
for cycle_vertices in cycles:
# Get the best heads and their probabilities
cycle_edges = edges[cycle_vertices]
cycle_probs = probs[cycle_vertices, cycle_edges]
# Get the second-best edges and their probabilities
probs[cycle_vertices, cycle_edges] = 0
backoff_edges = np.argmax(probs[cycle_vertices], axis=1)
backoff_probs = probs[cycle_vertices, backoff_edges]
probs[cycle_vertices, cycle_edges] = cycle_probs
# Find the node in the cycle that the model is the
# least confident about and its probability
new_root_in_cycle = np.argmax(backoff_probs/cycle_probs)
new_cycle_root = cycle_vertices[new_root_in_cycle]
# Set the new root
probs[new_cycle_root, cycle_edges[new_root_in_cycle]] = 0
edges[new_cycle_root] = backoff_edges[new_root_in_cycle]
return edges
def find_roots(edges):
"""Return a list of vertices that were considered root by a dependent."""
return np.where(edges[1:] == 0)[0] + 1
def make_root(probs, root, eta=1e-9):
"""Make specified vertex (index) root and nothing else."""
probs = np.array(probs)
probs[1:, 0] = 0
probs[root, :] = 0
probs[root, 0] = 1
probs /= np.sum(probs + eta, axis=1, keepdims=True)
return probs
def score_edges(probs, edges, eta=1e-9):
"""score a graph (so we can choose the best one)"""
return np.sum(np.log(probs[np.arange(1, len(probs)), edges[1:]] + eta))
def get_best_graph(probs):
"""
Returns the best graph, applying the CLE algorithm and making sure
there is only a single root.
"""
# zero out the diagonal (no word can be its own head)
probs *= 1 - np.eye(len(probs)).astype(np.float32)
probs[0] = 0 # zero out first row (root points to nothing else)
probs[0, 0] = 1 # root points to itself
probs /= np.sum(probs, axis=1, keepdims=True) # normalize
# apply CLE algorithm
# edges = chu_liu_edmonds(probs)
edges = greedy(probs)
# deal with multiple roots
roots = find_roots(edges)
best_edges = edges
best_score = -np.inf
if len(roots) > 1:
# print("more than 1 root!", roots)
for root in roots:
# apply CLE again with each of the possible roots fixed as the root
# we return the highest scoring graph
probs_ = make_root(probs, root)
# edges_ = chu_liu_edmonds(probs_)
edges_ = greedy(probs_)
score = score_edges(probs_, edges_)
if score > best_score:
best_edges = edges_
best_score = score
return best_edges
def find_cycles(edges):
"""
Finds cycles in a graph. Returns empty list if no cycles exist.
Cf. https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
"""
vertices = np.arange(len(edges))
indices = np.zeros_like(vertices) - 1
lowlinks = np.zeros_like(vertices) - 1
stack = []
onstack = np.zeros_like(vertices, dtype=np.bool)
current_index = 0
cycles = []
def _strong_connect(vertex, current_index):
indices[vertex] = current_index
lowlinks[vertex] = current_index
stack.append(vertex)
current_index += 1
onstack[vertex] = True
for vertex_ in np.where(edges == vertex)[0]:
if indices[vertex_] == -1:
current_index = _strong_connect(vertex_, current_index)
lowlinks[vertex] = min(lowlinks[vertex], lowlinks[vertex_])
elif onstack[vertex_]:
lowlinks[vertex] = min(lowlinks[vertex], indices[vertex_])
if lowlinks[vertex] == indices[vertex]:
cycle = []
vertex_ = -1
while vertex_ != vertex:
vertex_ = stack.pop()
onstack[vertex_] = False
cycle.append(vertex_)
if len(cycle) > 1:
cycles.append(np.array(cycle))
return current_index
for vertex in vertices:
if indices[vertex] == -1:
current_index = _strong_connect(vertex, current_index)
return cycles
def test():
"""test out MST"""
np.random.seed(6)
n = 20
probs = np.random.randint(0, 99, [n, n])
# probs = probs * (1-np.eye(n, dtype=np.int64))
print(probs)
probs = softmax(probs)
greedy = probs.argmax(axis=1)
edges = get_best_graph(probs)
print("greedy edges:", greedy)
print("CLE edges: ", edges)
print("nodes: ", np.arange(n))
if __name__ == '__main__':
test()