-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpower-matrix.c
79 lines (73 loc) · 2.66 KB
/
power-matrix.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* Following code does a the Power Method to a matrix for a Discrete Time Markov Chain (DTMC).
* Input is a DTMC (stochastic matrix).
* Output is a matrix to the n-th power.
* Author: Ricardo M. Czekster ([email protected])
* Date: 25/11/2019
*/
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <string.h> // memcpy
#include <math.h> // pow, sqrt
#define ORDER 3 // model size
#define MAXRUNS 10000 // number of runs
#define RESIDUE 1e-10 // residual difference between two iterations
/** Checks for convergence, i.e., all positions from two vectors must be greater than the RESIDUE constant. */
int converge(float m[ORDER][ORDER]) {
int i, j;
for (i = 0; i < ORDER-1; i++)
for (j = 0; j < ORDER; j++)
if (sqrt(pow(m[i][j] - m[i+1][j], 2)) > RESIDUE)
return 0;
return 1;
}
/** Performs a vector-matrix product - this is a classic algorithm available in the Internet */
// based on https://www.programmingsimplified.com/c-program-multiply-matrices
void multiply(float m[ORDER][ORDER]) {
int c,d,k;
float aux[ORDER][ORDER];
float tot = 0.0;
for (c = 0; c < ORDER; c++) {
for (d = 0; d < ORDER; d++) {
for (k = 0; k < ORDER; k++)
tot += m[c][k] * m[k][d];
aux[c][d] = tot;
tot = 0;
}
}
memcpy(m, aux, sizeof(float)*ORDER*ORDER);
}
int main(int argc, char *argv[]) {
/*Change to *your* matrix here or build a text file reader containing the input DTMC matrix.*/
float D[ORDER][ORDER] = {
{ 0.470588235, 0.176470588, 0.352941176 },
{ 0.470588235, 0.0 , 0.529411765 },
{ 0.176470588, 0.117647059, 0.705882353 }
};
int i, j;
int runs = 0;
do {
multiply(D);
if (++runs > MAXRUNS)
break;
} while (!converge(D));
printf("Number of iterations: %d\n", runs-1);
for (i = 0; i < ORDER; i++) {
for (j = 0; j < ORDER; j++)
printf("%f ", D[i][j]);
printf("\n");
}
}