Skip to content

Latest commit

 

History

History
46 lines (25 loc) · 1.74 KB

高数.多元函数微分学.md

File metadata and controls

46 lines (25 loc) · 1.74 KB

高数.多元函数微分学

​ 1.极限:

​ 多元函数极限;

​ $ lim_{(x,y)\rightarrow(x_0,y_0)}f(x,y)=A$

​ 例:

$lim_{(x,y)\rightarrow(0,0)}\sqrt{x y+1}-1/x y$= $lim_{(x,y)\rightarrow(0,0)}x y+1-1/x y(\sqrt{x y+1}+1)$=$lim_{(x,y)\rightarrow(0,0)}1/\sqrt{x y+1}+1$=1/2

​ 2.连续:

​ 如果$lim_{x\rightarrow x_0 x\rightarrow y_0}f(x,y)=f(x_0,y_0)$,则称f(x,y)在点$(x_0,y_0)$出连续。

​ 如果二元函数不连续,则没有断点。

​ 3.偏导数: ​ 设函数$z=f(x,y)在点(x_0,y_0)$的某个领域有定义,若极限

$lim_{\Delta x\rightarrow0}f(x_0+\Delta x,y_0)-f(x_0,y_0)/\Delta x$

​ 存在,则次函数被称为函数$z=f(x,y)$在点$(x_0,y_0)$出对X 的偏导数。记为:

​ $f'x(x_0,y_0)= lim{\Delta x \rightarrow 0}f(x_0+\Delta x,y_0)-f(x_0,y_0)/\Delta x = lim{x\rightarrow x_0}f(x,y_0)-f(x_0,y_0)/x-x_0$

$f'x(x_0,y_0)= lim{\Delta y \rightarrow 0}f(x_0,\Delta y+y_0)-f(x_0,y_0)/\Delta y = lim{y\rightarrow y_0}f(x_0,y)-f(x_0,y_0)/y - y_0$

​ 4.可微:

​ 如果函数$z=f(x,y)$在点(x,y)的全增量$\Delta z =f(x+\Delta x,y+\Delta y)-f(x,y)$可表示为:

$\Delta z= A \Delta x +B \Delta y +o(p) $

​ 其中o(p)为误差;

​ 二元函数判断在一点是否可微:

	1. 写全增量$\Delta z =f(\Delta x+x_0,y_0+\Delta y+y_0)-f(x_0,y_0)$
	2. 写出线性增量$A \Delta x +B \Delta y$,其中$A =f'(x_0,y_0),B=f'(x_0,y_0)$;
	3. 写出$lim _{\Delta x\rightarrow x_0,\Delta y\rightarrow y_0}\Delta z -(A\Delta x -B\Delta y)/ \sqrt{(\Delta x)^2+(\Delta y)^2}$,若该极限等于0,则z=f(x,y)在点$(x_0,y_0)$可微,否则,不可微。

例:

​ ![6]((https://github.com/cx123cx456/cx123cx456.github.io/blob/master/photo/6.png)