-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
266 lines (201 loc) · 10.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import datetime
from functools import reduce
from pkg_resources import normalize_path
import streamlit as st
import pandas as pd
import altair as alt
import os
try:
from app_secrets import MINIO_ACCESS_KEY, MINIO_ENCRYPT_KEY
except:
access_key=os.getenv("MINIO_ACCESS_KEY")
secret_key=os.getenv("MINIO_SECRET_KEY")
# numbers for 2019
inhabitants = {'Germany': 83.16,
'France': 67.2,
'United Kingdom': 67.1,
'Italy': 60.23,
'Spain': 47.05,
'Poland': 37.97,
'Romania': 19.28,
'Netherlands': 17.34,
'Belgium': 11.49,
'Greece': 10.69,
'Sweden': 10.15,
'Switzerland': 8.57,
'Austria': 8.91,
'Norway': 5.36,
'Denmark': 5.77}
# invalidate cache every 1h so user gets new data without resetting cache in the hamburger menue
@st.cache(ttl=60*60*1)
def read_data():
BASEURL = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series"
url_confirmed = f"{BASEURL}/time_series_covid19_confirmed_global.csv"
url_deaths = f"{BASEURL}/time_series_covid19_deaths_global.csv"
url_recovered = f"{BASEURL}/time_series_covid19_recovered_global.csv"
confirmed = pd.read_csv(url_confirmed, index_col=0)
deaths = pd.read_csv(url_deaths, index_col=0)
recovered = pd.read_csv(url_recovered, index_col=0)
# sum over potentially duplicate rows (France and their territories)
confirmed = confirmed.groupby("Country/Region").sum().reset_index()
deaths = deaths.groupby("Country/Region").sum().reset_index()
recovered = recovered.groupby("Country/Region").sum().reset_index()
return (confirmed, deaths, recovered)
def transform(df, collabel='confirmed', norm=False):
dfm = pd.melt(df)
dfm["date"] = pd.to_datetime(dfm.variable, infer_datetime_format=True)
dfm = dfm.set_index("date")
dfm = dfm[["value"]]
dfm.columns = [collabel]
if norm:
dfm[[collabel]] = dfm[[collabel]] / (inhabitants[norm]* 1_000_000) * 100_000
return dfm
def transform2(df, collabel='confirmed'):
dfm = pd.melt(df, id_vars=["Country/Region"])
dfm["date"] = pd.to_datetime(dfm.variable, infer_datetime_format=True)
dfm = dfm.set_index("date")
dfm = dfm[["Country/Region","value"]]
dfm.columns = ["country", collabel]
return dfm
def main():
st.set_page_config(page_title="Covid-19", page_icon=None, layout='centered', initial_sidebar_state='auto')
st.title("🦠 Covid-19 Data Explorer")
st.markdown("""\
This app illustrates the spread of COVID-19 in select countries of Europe over time.
""")
#st.error("⚠️ There is currently an issue in the datasource of JHU. Data for 03/13 is invalid and thus removed!")
countries = ["Germany", "Austria", "Belgium", "Denmark", "France", "Greece", "Italy", \
"Netherlands", "Norway", "Poland", "Romania", "Spain", "Sweden", \
"Switzerland", "United Kingdom"]
analysis = st.sidebar.selectbox("Choose Analysis", ["Overview", "By Country"])
if analysis == "Overview":
st.header("COVID-19 cases and fatality rate in Europe")
st.markdown("""\
These are the reported case numbers for a selection of european countries"""
f""" (currently only {', '.join(countries)}). """
"""The case fatality rate (CFR) is calculated as:
$$
CFR[\%] = \\frac{fatalities}{\\textit{all cases}}
$$
ℹ️ You can select/ deselect countries and switch between linear and log scales.
""")
confirmed, deaths, recovered = read_data()
multiselection = st.multiselect("Select countries:", countries, default=countries)
logscale = st.checkbox("Log scale", False)
confirmed = confirmed[confirmed["Country/Region"].isin(multiselection)]
confirmed = confirmed.drop(["Lat", "Long"],axis=1)
confirmed = transform2(confirmed, collabel="confirmed")
deaths = deaths[deaths["Country/Region"].isin(multiselection)]
deaths = deaths.drop(["Lat", "Long"],axis=1)
deaths = transform2(deaths, collabel="deaths")
frate = confirmed[["country"]]
frate["frate"] = (deaths.deaths / confirmed.confirmed)*100
# saveguard for empty selection
if len(multiselection) == 0:
return
SCALE = alt.Scale(type='linear')
if logscale:
confirmed["confirmed"] += 0.00001
confirmed = confirmed[confirmed.index > '2020-02-16']
frate = frate[frate.index > '2020-02-16']
SCALE = alt.Scale(type='log', domain=[10, int(max(confirmed.confirmed))], clamp=True)
c2 = alt.Chart(confirmed.reset_index()).properties(height=150).mark_line().encode(
x=alt.X("date:T", title="Date"),
y=alt.Y("confirmed:Q", title="Cases", scale=SCALE),
color=alt.Color('country:N', title="Country")
)
# case fatality rate...
c3 = alt.Chart(frate.reset_index()).properties(height=100).mark_line().encode(
x=alt.X("date:T", title="Date"),
y=alt.Y("frate:Q", title="Fatality rate [%]", scale=alt.Scale(type='linear')),
color=alt.Color('country:N', title="Country")
)
per100k = confirmed.loc[[confirmed.index.max()]].copy()
per100k.loc[:,'inhabitants'] = per100k.apply(lambda x: inhabitants[x['country']], axis=1)
per100k.loc[:,'per100k'] = per100k.confirmed / (per100k.inhabitants * 1_000_000) * 100_000
per100k = per100k.set_index("country")
per100k = per100k.sort_values(ascending=False, by='per100k')
per100k.loc[:,'per100k'] = per100k.per100k.round(2)
c4 = alt.Chart(per100k.reset_index()).properties(width=75).mark_bar().encode(
x=alt.X("per100k:Q", title="Cases per 100k inhabitants"),
y=alt.Y("country:N", title="Countries", sort=None),
color=alt.Color('country:N', title="Country"),
tooltip=[alt.Tooltip('country:N', title='Country'),
alt.Tooltip('per100k:Q', title='Cases per 100k'),
alt.Tooltip('inhabitants:Q', title='Inhabitants [mio]')]
)
st.altair_chart(alt.hconcat(c4, alt.vconcat(c2, c3)), use_container_width=True)
st.markdown(f"""\
<div style="font-size: small">
⚠️ Please take the CFR with a grain of salt. The ratio is
highly dependend on the total number of tests conducted in a country. In the early stages
of the outbreak often mainly severe cases with clear symptoms are detected. Thus mild cases
are not recorded which skews the CFR.
</div><br/>
""", unsafe_allow_html=True)
elif analysis == "By Country":
confirmed, deaths, recovered = read_data()
st.header("Country statistics")
st.markdown("""\
The reported number of active, recovered and deceased COVID-19 cases by country """
f""" (currently only {', '.join(countries)}).
"""
"""
ℹ️ You can select countries and plot data as cummulative counts or new active cases per day.
Normalize scales the values to counts per 100k inhabitants.
""")
# selections
col1, col2, col3, _, _ = st.beta_columns(5)
selection = col1.selectbox("Select country:", countries)
cummulative = col2.radio("Display type:", ["total", "new cases"])
norm_sel = col3.radio("Normalize:", ["no", "yes"])
normalize = selection if norm_sel == "yes" else False
confirmed = confirmed[confirmed["Country/Region"] == selection].iloc[:,3:]
confirmed = transform(confirmed, collabel="confirmed", norm=normalize)
deaths = deaths[deaths["Country/Region"] == selection].iloc[:,3:]
deaths = transform(deaths, collabel="deaths", norm=normalize)
recovered = recovered[recovered["Country/Region"] == selection].iloc[:,3:]
recovered = transform(recovered, collabel="recovered", norm=normalize)
df = reduce(lambda a,b: pd.merge(a,b, on='date'), [confirmed, recovered, deaths])
df["active"] = df.confirmed - (df.deaths + df.recovered)
variables = ["recovered", "active", "deaths"]
colors = ["steelblue", "orange", "black"]
value_vars = variables
SCALE = alt.Scale(domain=variables, range=colors)
if cummulative == 'new cases':
value_vars = ["new"]
df["new"] = df.confirmed - df.shift(1).confirmed
df["new"].loc[df.new < 0] = 0
SCALE = alt.Scale(domain=["new"], range=["orange"])
dfm = pd.melt(df.reset_index(), id_vars=["date"], value_vars=value_vars)
# introduce order col as altair does auto-sort on stacked elements
dfm['order'] = dfm['variable'].replace(
{val: i for i, val in enumerate(variables[::-1])}
)
cases_label = "Cases" if normalize == False else "Cases per 100k"
c = alt.Chart(dfm.reset_index()).mark_bar().properties(height=200).encode(
x=alt.X("date:T", title="Date"),
y=alt.Y("sum(value):Q", title=cases_label, scale=alt.Scale(type='linear')),
color=alt.Color('variable:N', title="Category", scale=SCALE), #, sort=alt.EncodingSortField('value', order='ascending')),
order='order'
)
if cummulative != 'new cases':
st.altair_chart(c, use_container_width=True)
else:
# add smooth 7-day trend
rm_7day = df[['new']].rolling('7D').mean().rename(columns={'new': 'value'})
c_7day = alt.Chart(rm_7day.reset_index()).properties(height=200).mark_line(strokeDash=[1,1], color='red').encode(
x=alt.X("date:T", title="Date"),
y=alt.Y("value:Q", title=cases_label, scale=alt.Scale(type='linear')),
)
st.altair_chart((c + c_7day), use_container_width=True)
st.markdown(f"""\
<div style="font-size: small">Daily reported new cases (incl. 7-day average).</div><br/>
""", unsafe_allow_html=True)
st.info("""\
by: [C. Werner](https://www.christianwerner.net) | source: [GitHub](https://www.github.com/cwerner/covid19)
| data source: [Johns Hopkins Univerity (GitHub)](https://github.com/CSSEGISandData/COVID-19).
""")
# ----------------------
if __name__ == "__main__":
main()