-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathnyu_dataloader.py
58 lines (44 loc) · 1.78 KB
/
nyu_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
from torch.utils.data import Dataset, DataLoader
from PIL import Image
from torchvision import transforms, utils
class NYU_v2_datset(Dataset):
"""NYUDataset."""
def __init__(self, root_dir, scale=8, train=True, transform=None):
"""
Args:
root_dir (string): Directory with all the images.
scale (float): dataset scale
train (bool): train or test
transform (callable, optional): Optional transform to be applied on a sample.
"""
self.root_dir = root_dir
self.transform = transform
self.scale = scale
if train:
self.depths = np.load('%s/train_depth_split.npy'%root_dir)
self.images = np.load('%s/train_images_split.npy'%root_dir)
else:
self.depths = np.load('%s/test_depth.npy'%root_dir)
self.images = np.load('%s/test_images_v2.npy'%root_dir)
def __len__(self):
return self.depths.shape[0]
def __getitem__(self, idx):
depth = self.depths[idx]
image = self.images[idx]
h, w = depth.shape
s = self.scale
target = np.array(Image.fromarray(depth).resize((w//s,h//s),Image.BICUBIC).resize((w, h), Image.BICUBIC))
if self.transform:
image = self.transform(image).float()
depth = self.transform(np.expand_dims(depth,2)).float()
target = self.transform(np.expand_dims(target,2)).float()
sample = {'guidance': image, 'target': target, 'gt': depth}
return sample
"""
return:
sample:
guidance (np.array float): H x W x 3
target ((np.array float)): H x W x 1
gt ((np.array float)): H x W x 1
"""