-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcustom_loss.py
33 lines (27 loc) · 1.57 KB
/
custom_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import torch
import torch.nn as nn
class loss_function(nn.Module):
def __init__(self, args):
super(loss_function, self).__init__()
self.lossfn = nn.MSELoss(reduction='sum')
self.lambda1 = args.lambda1
self.lambda2 = args.lambda2
self.lambda3 = args.lambda3
def lossfn_two_var(self, target1, target2, num_px = None):
if num_px is None:
return torch.sum(torch.pow((target1 - target2),2))
else:
return torch.sum(torch.pow((target1 - target2),2) / num_px)
def forward(self,output,GT_src_mask, GT_tgt_mask):
eps = 1
b, _, h, w = GT_src_mask.size()
src_num_fgnd = GT_src_mask.sum(dim=3, keepdim=True).sum(dim=2, keepdim=True) + eps
tgt_num_fgnd = GT_tgt_mask.sum(dim=3, keepdim=True).sum(dim=2, keepdim=True) + eps
L1 = self.lossfn(output['est_src_mask'], GT_src_mask) / (h*w) + self.lossfn(output['est_tgt_mask'],GT_tgt_mask) / (h*w) # mask consistency
L2 = self.lossfn_two_var(output['flow_S2T'], output['warped_flow_S2T'], src_num_fgnd)\
+ self.lossfn_two_var(output['flow_T2S'], output['warped_flow_T2S'], tgt_num_fgnd) # flow consistency
L3 = torch.sum(output['smoothness_S2T'] / src_num_fgnd) + torch.sum(output['smoothness_T2S'] / tgt_num_fgnd) # smoothness
return (self.lambda1*L1 + self.lambda2*L2 + self.lambda3*L3) / GT_src_mask.size(0), \
L1*self.lambda1 / GT_src_mask.size(0),\
L2*self.lambda2 / GT_src_mask.size(0),\
L3*self.lambda3 / GT_src_mask.size(0)