-
Notifications
You must be signed in to change notification settings - Fork 3.1k
/
Copy pathmodel_handler.py
233 lines (195 loc) · 7.77 KB
/
model_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Copyright (C) 2020-2022 Intel Corporation
# Copyright (C) 2022 CVAT.ai Corporation
#
# SPDX-License-Identifier: MIT
import os
import cv2
import numpy as np
from model_loader import ModelLoader
from shared import to_cvat_mask
class PixelLinkDecoder():
def __init__(self, pixel_threshold, link_threshold):
four_neighbours = False
if four_neighbours:
self._get_neighbours = self._get_neighbours_4
else:
self._get_neighbours = self._get_neighbours_8
self.pixel_conf_threshold = pixel_threshold
self.link_conf_threshold = link_threshold
def decode(self, height, width, detections: dict):
self.image_height = height
self.image_width = width
self.pixel_scores = self._set_pixel_scores(detections['model/segm_logits/add'])
self.link_scores = self._set_link_scores(detections['model/link_logits_/add'])
self.pixel_mask = self.pixel_scores >= self.pixel_conf_threshold
self.link_mask = self.link_scores >= self.link_conf_threshold
self.points = list(zip(*np.where(self.pixel_mask)))
self.h, self.w = np.shape(self.pixel_mask)
self.group_mask = dict.fromkeys(self.points, -1)
self.bboxes = None
self.root_map = None
self.mask = None
self._decode()
def _softmax(self, x, axis=None):
return np.exp(x - self._logsumexp(x, axis=axis, keepdims=True))
# pylint: disable=no-self-use
def _logsumexp(self, a, axis=None, b=None, keepdims=False, return_sign=False):
if b is not None:
a, b = np.broadcast_arrays(a, b)
if np.any(b == 0):
a = a + 0. # promote to at least float
a[b == 0] = -np.inf
a_max = np.amax(a, axis=axis, keepdims=True)
if a_max.ndim > 0:
a_max[~np.isfinite(a_max)] = 0
elif not np.isfinite(a_max):
a_max = 0
if b is not None:
b = np.asarray(b)
tmp = b * np.exp(a - a_max)
else:
tmp = np.exp(a - a_max)
# suppress warnings about log of zero
with np.errstate(divide='ignore'):
s = np.sum(tmp, axis=axis, keepdims=keepdims)
if return_sign:
sgn = np.sign(s)
s *= sgn # /= makes more sense but we need zero -> zero
out = np.log(s)
if not keepdims:
a_max = np.squeeze(a_max, axis=axis)
out += a_max
if return_sign:
return out, sgn
else:
return out
def _set_pixel_scores(self, pixel_scores):
"get softmaxed properly shaped pixel scores"
tmp = np.transpose(pixel_scores, (0, 2, 3, 1))
return self._softmax(tmp, axis=-1)[0, :, :, 1]
def _set_link_scores(self, link_scores):
"get softmaxed properly shaped links scores"
tmp = np.transpose(link_scores, (0, 2, 3, 1))
tmp_reshaped = tmp.reshape(tmp.shape[:-1] + (8, 2))
return self._softmax(tmp_reshaped, axis=-1)[0, :, :, :, 1]
def _find_root(self, point):
root = point
update_parent = False
tmp = self.group_mask[root]
while tmp != -1:
root = tmp
tmp = self.group_mask[root]
update_parent = True
if update_parent:
self.group_mask[point] = root
return root
def _join(self, p1, p2):
root1 = self._find_root(p1)
root2 = self._find_root(p2)
if root1 != root2:
self.group_mask[root2] = root1
def _get_index(self, root):
if root not in self.root_map:
self.root_map[root] = len(self.root_map) + 1
return self.root_map[root]
def _get_all(self):
self.root_map = {}
self.mask = np.zeros_like(self.pixel_mask, dtype=np.int32)
for point in self.points:
point_root = self._find_root(point)
bbox_idx = self._get_index(point_root)
self.mask[point] = bbox_idx
def _get_neighbours_8(self, x, y):
w, h = self.w, self.h
tmp = [(0, x - 1, y - 1), (1, x, y - 1),
(2, x + 1, y - 1), (3, x - 1, y),
(4, x + 1, y), (5, x - 1, y + 1),
(6, x, y + 1), (7, x + 1, y + 1)]
return [i for i in tmp if i[1] >= 0 and i[1] < w and i[2] >= 0 and i[2] < h]
def _get_neighbours_4(self, x, y):
w, h = self.w, self.h
tmp = [(1, x, y - 1),
(3, x - 1, y),
(4, x + 1, y),
(6, x, y + 1)]
return [i for i in tmp if i[1] >= 0 and i[1] < w and i[2] >= 0 and i[2] < h]
def _mask_to_bboxes(self, min_area=300, min_height=10):
self.bboxes = []
max_bbox_idx = self.mask.max()
mask_tmp = cv2.resize(self.mask, (self.image_width, self.image_height), interpolation=cv2.INTER_NEAREST)
for bbox_idx in range(1, max_bbox_idx + 1):
bbox_mask = mask_tmp == bbox_idx
cnts, _ = cv2.findContours(bbox_mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if len(cnts) == 0:
continue
cnt = cnts[0]
rect, w, h = self._min_area_rect(cnt)
if min(w, h) < min_height:
continue
if w * h < min_area:
continue
self.bboxes.append(self._order_points(rect))
# pylint: disable=no-self-use
def _min_area_rect(self, cnt):
rect = cv2.minAreaRect(cnt)
w, h = rect[1]
box = cv2.boxPoints(rect)
box = np.int0(box)
return box, w, h
# pylint: disable=no-self-use
def _order_points(self, rect):
""" (x, y)
Order: TL, TR, BR, BL
"""
tmp = np.zeros_like(rect)
sums = rect.sum(axis=1)
tmp[0] = rect[np.argmin(sums)]
tmp[2] = rect[np.argmax(sums)]
diff = np.diff(rect, axis=1)
tmp[1] = rect[np.argmin(diff)]
tmp[3] = rect[np.argmax(diff)]
return tmp
def _decode(self):
for point in self.points:
y, x = point
neighbours = self._get_neighbours(x, y)
for n_idx, nx, ny in neighbours:
link_value = self.link_mask[y, x, n_idx]
pixel_cls = self.pixel_mask[ny, nx]
if link_value and pixel_cls:
self._join(point, (ny, nx))
self._get_all()
self._mask_to_bboxes()
class ModelHandler:
def __init__(self, labels):
base_dir = os.path.abspath(os.environ.get("MODEL_PATH",
"/opt/nuclio/open_model_zoo/intel/text-detection-0004/FP32"))
model_xml = os.path.join(base_dir, "text-detection-0004.xml")
model_bin = os.path.join(base_dir, "text-detection-0004.bin")
self.model = ModelLoader(model_xml, model_bin)
self.labels = labels
def infer(self, image, pixel_threshold, link_threshold):
output_layer = self.model.infer(image)
results = []
obj_class = 1
pcd = PixelLinkDecoder(pixel_threshold, link_threshold)
pcd.decode(image.height, image.width, output_layer)
for box in pcd.bboxes:
mask = pcd.pixel_mask
mask = np.array(mask, dtype=np.uint8)
mask = cv2.resize(mask, dsize=(image.width, image.height), interpolation=cv2.INTER_CUBIC)
cv2.normalize(mask, mask, 0, 255, cv2.NORM_MINMAX)
box = box.ravel().tolist()
x_min = min(box[::2])
x_max = max(box[::2])
y_min = min(box[1::2])
y_max = max(box[1::2])
cvat_mask = to_cvat_mask((x_min, y_min, x_max, y_max), mask)
results.append({
"confidence": None,
"label": self.labels.get(obj_class, "unknown"),
"points": box,
"mask": cvat_mask,
"type": "mask",
})
return results