-
Notifications
You must be signed in to change notification settings - Fork 3.1k
/
Copy pathmodel_handler.py
60 lines (47 loc) · 2.07 KB
/
model_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright (C) 2020-2022 Intel Corporation
# Copyright (C) 2022 CVAT.ai Corporation
#
# SPDX-License-Identifier: MIT
import os
import cv2
import numpy as np
from model_loader import ModelLoader
from shared import to_cvat_mask
class ModelHandler:
def __init__(self, labels):
base_dir = os.path.abspath(os.environ.get("MODEL_PATH",
"/opt/nuclio/open_model_zoo/intel/semantic-segmentation-adas-0001/FP32"))
model_xml = os.path.join(base_dir, "semantic-segmentation-adas-0001.xml")
model_bin = os.path.join(base_dir, "semantic-segmentation-adas-0001.bin")
self.model = ModelLoader(model_xml, model_bin)
self.labels = labels
def infer(self, image, threshold):
output_layer = self.model.infer(image)
results = []
mask = output_layer[0, 0, :, :]
width, height = mask.shape
for i in range(len(self.labels)):
mask_by_label = np.zeros((width, height), dtype=np.uint8)
mask_by_label = ((mask == float(i)) * 255).astype(np.uint8)
mask_by_label = cv2.resize(mask_by_label,
dsize=(image.width, image.height),
interpolation=cv2.INTER_NEAREST)
contours, _ = cv2.findContours(mask_by_label, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
contour = np.flip(contour, axis=1)
if len(contour) < 3:
continue
x_min = max(0, int(np.min(contour[:,:,0])))
x_max = max(0, int(np.max(contour[:,:,0])))
y_min = max(0, int(np.min(contour[:,:,1])))
y_max = max(0, int(np.max(contour[:,:,1])))
cvat_mask = to_cvat_mask((x_min, y_min, x_max, y_max), mask_by_label)
results.append({
"confidence": None,
"label": self.labels.get(i, "unknown"),
"points": contour.ravel().tolist(),
"mask": cvat_mask,
"type": "mask",
})
return results