-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPoster.tex
317 lines (281 loc) · 12.8 KB
/
Poster.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This is a LaTeX file for an A0 poster.
%
% template poster taken from https://canizo.org/latex_poster
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% scpdata: a data package for single-cell proteomics
%
% Poster for the Eurobioc2019, December 2019.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass{article}
% To modify the size of the page:
\usepackage[dvips,a3paper,portrait,centering,margin=0.5cm]{geometry}
% To create multiple columns
\usepackage{multicol}
\usepackage[utf8]{inputenc}
% To align images
\usepackage[export]{adjustbox}
% Use captions in minipages
\usepackage{caption}
% Math font
\usepackage{amsmath, amsthm, amsfonts}
% Include figure files.
\usepackage{graphicx}
% Coding fonts
% ------------
% For including R chunks
\usepackage{listings}
\lstset{
language=R,
basicstyle=\small\ttfamily\color{vdgray}, % the size of the fonts that are used for the code
% sensitive=false,
numbers=left, % where to put the line-numbers
numberstyle=\tiny\color{gray}, % the style that is used for the line-numbers
stepnumber=1, % the step between two line-numbers.
numbersep=0.1cm, % how far the line-numbers are from the code
backgroundcolor=\color{lgray}, % choose the background color. You must add \usepackage{color}
deletekeywords={stat},
keywordstyle=\color{blue}, % keyword style
stringstyle=\color{green}, % string literal style
xleftmargin=0.5cm,
}
% Create command for highlighting inline code or variables
\newcommand{\hcode}[2][lgray]{{\ttfamily\color{vdgray}\colorbox{#1}{#2}}}
% Colors
% ------
\usepackage{color}
\usepackage[dvipsnames]{xcolor}
% Color panel used throughout the poster
\definecolor{lgray}{rgb}{0.9179688,0.9179688,0.9179688} % #ebebeb
\definecolor{dgray}{rgb}{0.796875,0.796875,0.796875} % #cccccc
\definecolor{vdgray}{rgb}{0.3984375,0.3984375,0.3984375} % #666666
\definecolor{coral}{rgb}{0.9960938,0.4960938,0.3125000} % #ff7f50
\definecolor{blue}{rgb}{0.4218750,0.6484375,0.8007812} % #6ca6cd
\definecolor{green}{rgb}{0.6992188,0.7265625,0.5078125} % #b3ba82
\definecolor{yellow}{rgb}{0.9570312,0.8671875,0.6992188} % #f5deb3
% Adjust space between reference items
% ------------------------------------
\let\OLDthebibliography\thebibliography
\renewcommand\thebibliography[1]{
\OLDthebibliography{#1}
\setlength{\parskip}{0pt}
\setlength{\itemsep}{0pt plus 0.3ex}
}
\pagestyle{empty}
\def\to{\rightarrow}
% ===========================================================================
\title{}
\author{}
\date{}
\begin{document}
% ---------------------------------------------------------------------------
% Banner
\begin{center}
\colorbox{lgray}{
\begin{minipage}{3cm}
\includegraphics[width=1.2\linewidth]{figs/DSC_2812.jpg}
\end{minipage}
%&
\begin{minipage}{.74\textwidth}
\begin{center}
% Title
\huge \textbf{scpdata: a data package for single-cell proteomics} \\
\vspace{0.4cm}
% Authors
\Large \textbf{Christophe Vanderaa, Laurent Gatto} \\
% Affiliation
\Large \textit{Computational biology and bioinformatics, de Duve Institute, UCLouvain } \\
% email
\vspace{0.4cm}
\normalsize [email protected] \\
\end{center}
\end{minipage}
%&
\begin{minipage}{3.7cm}
\includegraphics[width=0.7\linewidth, right]{figs/fnrs.png} \\
\vspace{0.5cm}
\includegraphics[width=1.1\linewidth, right]{figs/ucl.png}
\end{minipage}
}
\end{center}
% ---------------------------------------------------------------------------
% Summary + conclusion
\noindent
% Summary
\colorbox{yellow}{
\noindent
\begin{minipage}[t]{13.7cm}
\vspace{.15cm}
\section*{\huge Summary}
\large
Recent advances in sample preparation, processing and mass spectrometry (MS) have allowed the emergence of MS-based \textbf{single-cell proteomics} (SCP). However, bioinformatics tools to process and analyze these new types of data are still missing. In order to boost the development and the benchmarking of SCP methodologies, we are developing the \textbf{\hcode[yellow]{scpdata}} experiment package. The package will distribute published and \textbf{curated} SCP data sets in \textbf{standardized Bioconductor} format.
\vspace{0.1cm}
\end{minipage}
}
\hspace{0.37cm}
% Conclusion
\noindent
\colorbox{yellow}{
\begin{minipage}[t]{13.6cm}
\vspace{.2cm}
\section*{\huge Conclusion}
\vspace{0.35cm}
\large
MS-based SCP is still in its infancy. Nevertheless, the \hcode[yellow]{scpdata} experiment package offers a growing repository of curated data ideally suited for \textbf{method benchmarking} and \textbf{data QC}. This will enable us to develop new methodologies to tackle the current hurdles that MS-SCP faces: missing data, batch effect, and high dimensionality.
\vspace{0.57cm}
\end{minipage}
}
\vspace{-1cm}
% ---------------------------------------------------------------------------
% Create a 2 column layout
\setlength{\columnsep}{0.5cm}
\begin{multicols}{2}
% ---------------------------------------------------------------------------
% Introduction
\noindent
\begin{minipage}[t]{\linewidth}
\vspace{0.5cm}
\section*{\huge Introduction}
\large
There are two main pipelines able to generate MS-SCP data:
\textbf{\large nanoPOTS pipeline} (Zhu et al., 2018, \cite{Zhu2018-bf}) runs label-free proteomics for single cells. The \textbf{\color{BrickRed}{throughput is low}} ($\pm$ 10 samples/day), but it achieves \textbf{\color{OliveGreen}{accurate peptide quantification}}.
\vspace{-0.3cm}
\begin{center}
\includegraphics[width=0.87\linewidth]{figs/nanopots.png} \\
\end{center}
\vspace{-0.3cm}
\textbf{\large SCoPE pipeline} (Budnik et al., 2018, \cite{Budnik2018-qh}) adapts TMT-based proteomics to single-cells. The \textbf{\color{OliveGreen}{throughput is higher}} ($\pm$ 5 samples/hour), but it suffers from \textbf{\color{BrickRed}{presence of chemical noise}}.
\begin{center}
\includegraphics[width=0.9\linewidth]{figs/scopems.png} \\
\end{center}
\vspace{-0.3cm}
\end{minipage}
% ---------------------------------------------------------------------------
% Data manipulation
\noindent
\begin{minipage}[t]{\linewidth}
\vspace{0.55cm}
\section*{\huge Data manipulation}
\large
The Bioconductor class \hcode{MSnSet} is a reliable framework for \textbf{standard and systematic} quantitative data processing. Below, we have reproduced the analysis pipeline from \cite{Specht2019-jm}:
\begin{lstlisting}
data("specht2019_peptide")
specht2019_peptide %>%
scp_normalize_stat(what = "row", mean, "-") %>%
scp_aggregateByProtein() %>%
scp_normalize_stat(what = "column", median, "-") %>%
scp_normalize_stat(what = "row", mean, "-") %>%
imputeKNN(k = 3) %>%
batchCorrect(batch = "raw.file", target = "celltype") -> scpd
\end{lstlisting}
\end{minipage}
% ---------------------------------------------------------------------------
% Data quality control
\noindent
\begin{minipage}[t]{\linewidth}
\vspace{0.55cm}
\section*{\huge Data quality control}
\large
When developing the SCoPE technology, the Slavov lab also suggested some quality control (QC) measures and visualizations \cite{Huffman2019-ns} (Figure \ref{fig:qc}). The \hcode{scpdata} package provides the framework to generalize those metrics.
\begin{center}
\includegraphics[width=1.05\textwidth]{figs/QC.png}
\end{center}
\vspace{-0.5cm}
\captionof{figure}{\textbf{MS intensity distributions per channel at peptide level.} \small Contamination peptides or peptides with a low identification score were removed. Data taken from run \hcode{190222S\_LCA9\_X\_FP94BF} published in \cite{Specht2019-jm}. n: number of non-missing peptides.}
\label{fig:qc}
\end{minipage}
% ---------------------------------------------------------------------------
% Content of the package
\noindent
\begin{minipage}[t]{\linewidth}
\vspace{0.55cm}
\section*{\huge Content of the package}
\large
\hcode{scpdata} contains SCP data sets formatted as \hcode{MSnbase::MSnSet} objects \cite{Gatto2012-tb}. The package provides data at \textbf{peptide} and \textbf{protein} level. \textbf{Help files} are provided for every data set. Available data sets are listed using \hcode{scpdata()}.
\footnotesize
\begin{tabular}{@{\extracolsep{5pt}} cl}
\\[-1.8ex]\hline
\hline \\[-1.8ex]
\textbf{Item} & \textbf{Title} \\
\hline \\[-1.8ex]
dou2019\_1\_protein & FACS + nanoPOTS + TMT multiplexing: HeLa digests (Dou et al. 2019) \\
dou2019\_2\_protein & FACS + nanoPOTS + TMT multiplexing: testing boosting ratios (Dou et al... \\
dou2019\_3\_protein & FACS + nanoPOTS + TMT multiplexing: profiling of murine cell populations ... \\
specht2018\_peptide & SCoPE-MS + mPOP lysis upgrade: Master Mix 20180824 (Specht et al. 2018) \\
specht2019\_peptide & FACS + SCoPE2: comparing macrophages against monocytes (Specht et al. 2019 \\
specht2019\_peptide2 & FACS + SCoPE2: comparing macrophages against monocytes (Specht et al. 2019 \\
specht2019\_protein & FACS + SCoPE2: comparing macrophages against monocytes (Specht et al. 2019 \\
\hline \\[-1.8ex]
\end{tabular}
\end{minipage}
% ---------------------------------------------------------------------------
% Benchmarking
\noindent
\begin{minipage}[t]{\linewidth}
\vspace{0.5cm}
\section*{\huge Benchmarking}
\large
\hcode{scpdata} also offers an ideal environment for benchmarking. It will contain a wide variety of MS-SCP data sets from \textbf{well-defined synthetic standards} to \textbf{real biological samples}. Different methods can be compared using \textbf{objective benchmarking metrics} or \textbf{visualization} with dimension reduction (Figure \ref{fig:pca}).
\begin{center}
\includegraphics[width=\textwidth]{figs/PCA.png}
\end{center}
\captionof{figure}{\textbf{PCA plot of peptide expression data.} \small Macrophages and monocytes are well separated in the third principal component. However, the first and second components are driven by batch effects. LCA10 and LCA9 are two chromatographic batches. The PCA was performed using the NIPALS algorithm.}
\label{fig:pca}
\end{minipage}
% ---------------------------------------------------------------------------
% Problems to tackle
\noindent
\begin{minipage}[t]{\linewidth}
\vspace{0.35cm}
\section*{\huge Problems to tackle}
\vspace{0.15cm}
\end{minipage}
% Batch effect
\noindent
\begin{minipage}[h]{0.35\linewidth}
\subsection*{Batch effects}
\large
Batch effects are inherent to MS-SCP data since many samples/cells have to be distributed across \textbf{different MS runs}. This leads to major biases in the data (Figure \ref{fig:pca}).
% Missingness
\subsection*{Missingness}
\captionof{figure}{\textbf{Distribution of missing data in monocytes against macrophages.} \small The average missingness is $\pm$ 75 \%. Color indicates the log2 fold change of \textbf{\color{coral}macrophages} over \textbf{\color{green}monocytes} relative expression. Data from \cite{Specht2019-jm}.}
\label{fig:missing}
\begin{center}
\end{center}
\end{minipage}
\hspace{0.4cm}
% Missingness figure
\begin{minipage}[h]{0.6\linewidth}
\begin{center}
\includegraphics[width=0.5\linewidth, trim={10cm 3cm 7cm 0},clip]{figs/missing-leg.png}
\end{center}
\includegraphics[width=\linewidth, trim={0 2cm 0 2cm}]{figs/missing.png}
\end{minipage}
% Curse of dimensionality
\noindent
\begin{minipage}[h]{\linewidth}
\subsection*{Curse of dimensionality}
\large
Although current acquisition pipelines produce data sets of \textbf{thousands of peptides x hundreds of cells}, it is expected that new technological advances might raise the dimensionality 100 fold \cite{Specht2019-jm}. This is a challenge for the \textbf{statistical analyses} and for the \textbf{software optimization}. Possible solutions should be inspired from current achievements in single cell transcriptomics.
\end{minipage}
% ---------------------------------------------------------------------------
% Additional notes
\vspace{0.5cm}
\noindent
This work is funded by an Aspirant FRS-FNRS fellowship awarded to Christophe Vanderaa. The poster is available at {\color{blue}{https://github.com/cvanderaa/EuroBioc2019-Poster}}.
% ---------------------------------------------------------------------------
% References
\scriptsize
\bibliography{ref.bib}
\bibliographystyle{ieeetr}
% ---------------------------------------------------------------------------
% End of poster
\end{multicols}
\end{document}