-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathmain_test_realapplication.py
205 lines (164 loc) · 7.8 KB
/
main_test_realapplication.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os.path
import cv2
import logging
import numpy as np
from datetime import datetime
from collections import OrderedDict
from scipy.io import loadmat
from scipy import ndimage
import scipy.io as scio
import torch
from utils import utils_deblur
from utils import utils_logger
from utils import utils_sisr as sr
from utils import utils_image as util
from models.network_usrnet import USRNet as net # for pytorch version <= 1.7.1
# from models.network_usrnet_v1 import USRNet as net # for pytorch version >= 1.8.1
'''
Spyder (Python 3.7)
PyTorch 1.4.0
Windows 10 or Linux
Kai Zhang ([email protected])
github: https://github.com/cszn/USRNet
https://github.com/cszn/KAIR
If you have any question, please feel free to contact with me.
Kai Zhang (e-mail: [email protected])
by Kai Zhang (12/March/2020)
'''
"""
# --------------------------------------------
testing code of USRNet for the Table 1 in the paper
@inproceedings{zhang2020deep,
title={Deep unfolding network for image super-resolution},
author={Zhang, Kai and Van Gool, Luc and Timofte, Radu},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3217--3226},
year={2020}
}
# --------------------------------------------
|--model_zoo # model_zoo
|--usrgan # model_name, optimized for perceptual quality
|--usrnet # model_name, optimized for PSNR
|--usrgan_tiny # model_name, tiny model optimized for perceptual quality
|--usrnet_tiny # model_name, tiny model optimized for PSNR
|--testsets # testsets
|--real_set # testset_name, contain 3 real images
|--results # results
|--real_set_usrnet # result_name = testset_name + '_' + model_name
|--real_set_usrnet_tiny
# --------------------------------------------
"""
def main():
# ----------------------------------------
# Preparation
# ----------------------------------------
model_name = 'usrnet' # 'usrgan' | 'usrnet' | 'usrgan_tiny' | 'usrnet_tiny'
testset_name = 'set_real' # test set, 'set_real'
test_image = 'chip.png' # 'chip.png', 'comic.png'
#test_image = 'comic.png'
sf = 4 # scale factor, only from {1, 2, 3, 4}
show_img = False # default: False
save_E = True # save estimated image
save_LE = True # save zoomed LR, Estimated images
# ----------------------------------------
# set noise level and kernel
# ----------------------------------------
if 'chip' in test_image:
noise_level_img = 15 # noise level for LR image, 15 for chip
kernel_width_default_x1234 = [0.6, 0.9, 1.7, 2.2] # Gaussian kernel widths for x1, x2, x3, x4
else:
noise_level_img = 2 # noise level for LR image, 0.5~3 for clean images
kernel_width_default_x1234 = [0.4, 0.7, 1.5, 2.0] # default Gaussian kernel widths of clean/sharp images for x1, x2, x3, x4
noise_level_model = noise_level_img/255. # noise level of model
kernel_width = kernel_width_default_x1234[sf-1]
# set your own kernel width
# kernel_width = 2.2
k = utils_deblur.fspecial('gaussian', 25, kernel_width)
k = sr.shift_pixel(k, sf) # shift the kernel
k /= np.sum(k)
util.surf(k) if show_img else None
# scio.savemat('kernel_realapplication.mat', {'kernel':k})
# load approximated bicubic kernels
#kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernel_bicubicx234.mat'))['kernels']
# kernels = loadmat(os.path.join('kernels', 'kernel_bicubicx234.mat'))['kernels']
# kernel = kernels[0, sf-2].astype(np.float64)
kernel = util.single2tensor4(k[..., np.newaxis])
n_channels = 1 if 'gray' in model_name else 3 # 3 for color image, 1 for grayscale image
model_pool = 'model_zoo' # fixed
testsets = 'testsets' # fixed
results = 'results' # fixed
result_name = testset_name + '_' + model_name
model_path = os.path.join(model_pool, model_name+'.pth')
# ----------------------------------------
# L_path, E_path
# ----------------------------------------
L_path = os.path.join(testsets, testset_name) # L_path, fixed, for Low-quality images
E_path = os.path.join(results, result_name) # E_path, fixed, for Estimated images
util.mkdir(E_path)
logger_name = result_name
utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log'))
logger = logging.getLogger(logger_name)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# ----------------------------------------
# load model
# ----------------------------------------
if 'tiny' in model_name:
model = net(n_iter=6, h_nc=32, in_nc=4, out_nc=3, nc=[16, 32, 64, 64],
nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose")
else:
model = net(n_iter=8, h_nc=64, in_nc=4, out_nc=3, nc=[64, 128, 256, 512],
nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose")
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
for key, v in model.named_parameters():
v.requires_grad = False
number_parameters = sum(map(lambda x: x.numel(), model.parameters()))
logger.info('Params number: {}'.format(number_parameters))
model = model.to(device)
logger.info('Model path: {:s}'.format(model_path))
logger.info('model_name:{}, image sigma:{}'.format(model_name, noise_level_img))
logger.info(L_path)
img = os.path.join(L_path, test_image)
# ------------------------------------
# (1) img_L
# ------------------------------------
img_name, ext = os.path.splitext(os.path.basename(img))
img_L = util.imread_uint(img, n_channels=n_channels)
img_L = util.uint2single(img_L)
util.imshow(img_L) if show_img else None
w, h = img_L.shape[:2]
logger.info('{:>10s}--> ({:>4d}x{:<4d})'.format(img_name+ext, w, h))
# boundary handling
boarder = 8 # default setting for kernel size 25x25
img = cv2.resize(img_L, (sf*h, sf*w), interpolation=cv2.INTER_NEAREST)
img = utils_deblur.wrap_boundary_liu(img, [int(np.ceil(sf*w/boarder+2)*boarder), int(np.ceil(sf*h/boarder+2)*boarder)])
img_wrap = sr.downsample_np(img, sf, center=False)
img_wrap[:w, :h, :] = img_L
img_L = img_wrap
util.imshow(util.single2uint(img_L), title='LR image with noise level {}'.format(noise_level_img)) if show_img else None
img_L = util.single2tensor4(img_L)
img_L = img_L.to(device)
# ------------------------------------
# (2) img_E
# ------------------------------------
sigma = torch.tensor(noise_level_model).float().view([1, 1, 1, 1])
[img_L, kernel, sigma] = [el.to(device) for el in [img_L, kernel, sigma]]
img_E = model(img_L, kernel, sf, sigma)
img_E = util.tensor2uint(img_E)[:sf*w, :sf*h, ...]
if save_E:
util.imsave(img_E, os.path.join(E_path, img_name+'_x'+str(sf)+'_'+model_name+'.png'))
# --------------------------------
# (3) save img_LE
# --------------------------------
if save_LE:
k_v = k/np.max(k)*1.2
k_v = util.single2uint(np.tile(k_v[..., np.newaxis], [1, 1, 3]))
k_factor = 3
k_v = cv2.resize(k_v, (k_factor*k_v.shape[1], k_factor*k_v.shape[0]), interpolation=cv2.INTER_NEAREST)
img_L = util.tensor2uint(img_L)[:w, :h, ...]
img_I = cv2.resize(img_L, (sf*img_L.shape[1], sf*img_L.shape[0]), interpolation=cv2.INTER_NEAREST)
img_I[:k_v.shape[0], :k_v.shape[1], :] = k_v
util.imshow(np.concatenate([img_I, img_E], axis=1), title='LR / Recovered') if show_img else None
util.imsave(np.concatenate([img_I, img_E], axis=1), os.path.join(E_path, img_name+'_x'+str(sf)+'_'+model_name+'_LE.png'))
if __name__ == '__main__':
main()