From ff801e43d1d28634ef936497c73efed82a713076 Mon Sep 17 00:00:00 2001 From: "Jason K. Moore" Date: Tue, 24 Sep 2024 08:00:25 +0200 Subject: [PATCH 1/3] Add Gaussian noise to the dynamics for improved parameter identification. --- ...non_contiguous_parameter_identification.py | 24 ++++++++++++++----- 1 file changed, 18 insertions(+), 6 deletions(-) diff --git a/examples-gallery/plot_non_contiguous_parameter_identification.py b/examples-gallery/plot_non_contiguous_parameter_identification.py index fa622a0c..b9623ae2 100644 --- a/examples-gallery/plot_non_contiguous_parameter_identification.py +++ b/examples-gallery/plot_non_contiguous_parameter_identification.py @@ -57,6 +57,7 @@ # x1, x2, x3, x4 = me.dynamicsymbols('x1, x2, x3, x4') u1, u2, u3, u4 = me.dynamicsymbols('u1, u2, u3, u4') +n1, n2, n3, n4 = me.dynamicsymbols('n1, n2, n3, n4') m, c, k, l0 = sm.symbols('m, c, k, l0') t = me.dynamicsymbols._t @@ -65,10 +66,10 @@ x2.diff(t) - u2, x3.diff(t) - u3, x4.diff(t) - u4, - m*u1.diff(t) + c*u1 + k*(x1 - l0), - m*u2.diff(t) + c*u2 + k*(x2 - l0), - m*u3.diff(t) + c*u3 + k*(x3 - l0), - m*u4.diff(t) + c*u4 + k*(x4 - l0), + m*u1.diff(t) + c*u1 + k*(x1 - l0) + n1, + m*u2.diff(t) + c*u2 + k*(x2 - l0) + n2, + m*u3.diff(t) + c*u3 + k*(x3 - l0) + n3, + m*u4.diff(t) + c*u4 + k*(x4 - l0) + n4, ]) sm.pprint(eom) @@ -170,6 +171,15 @@ def obj_grad(free): k: (0.1, 10.0), } +noise_scale = 2.0 + +known_trajectories = { + n1: noise_scale*np.random.randn(num_nodes), + n2: noise_scale*np.random.randn(num_nodes), + n3: noise_scale*np.random.randn(num_nodes), + n4: noise_scale*np.random.randn(num_nodes), +} + problem = Problem( obj, obj_grad, @@ -178,6 +188,7 @@ def obj_grad(free): num_nodes, interval_value, known_parameter_map=par_map, + known_trajectory_map=known_trajectories, time_symbol=me.dynamicsymbols._t, integration_method='midpoint', bounds=bounds, @@ -192,9 +203,10 @@ def obj_grad(free): # are used and the speeds are set to zero. The last two values are the guesses # for :math:`c` and :math:`k`, respectively. # -initial_guess = np.hstack((np.array(measurements).flatten(), # x +initial_guess = np.hstack((np.zeros(4*num_nodes), #np.array(measurements).flatten(), # x np.zeros(4*num_nodes), # u - [0.1, 3.0])) # c, k + #[0.1, 3.0])) # c, k + [0.01, 0.1])) # c, k # %% # Solve the Optimization Problem From e9f871fc43a829a3ceb9acc32659650e0617533c Mon Sep 17 00:00:00 2001 From: "Jason K. Moore" Date: Tue, 24 Sep 2024 17:37:22 +0200 Subject: [PATCH 2/3] Use the same measurement per episode. --- ...non_contiguous_parameter_identification.py | 61 ++++++++++++------- 1 file changed, 38 insertions(+), 23 deletions(-) diff --git a/examples-gallery/plot_non_contiguous_parameter_identification.py b/examples-gallery/plot_non_contiguous_parameter_identification.py index b9623ae2..f4279fe8 100644 --- a/examples-gallery/plot_non_contiguous_parameter_identification.py +++ b/examples-gallery/plot_non_contiguous_parameter_identification.py @@ -55,9 +55,9 @@ # Set up the four sets of equations of motion, one for each of the four # measurements. # -x1, x2, x3, x4 = me.dynamicsymbols('x1, x2, x3, x4') -u1, u2, u3, u4 = me.dynamicsymbols('u1, u2, u3, u4') -n1, n2, n3, n4 = me.dynamicsymbols('n1, n2, n3, n4') +x1, x2, x3, x4, x5, x6 = me.dynamicsymbols('x1, x2, x3, x4, x5, x6') +u1, u2, u3, u4, u5, u6 = me.dynamicsymbols('u1, u2, u3, u4, u5, u6') +n1, n2, n3, n4, n5, n6 = me.dynamicsymbols('n1, n2, n3, n4, n5, n6') m, c, k, l0 = sm.symbols('m, c, k, l0') t = me.dynamicsymbols._t @@ -66,10 +66,14 @@ x2.diff(t) - u2, x3.diff(t) - u3, x4.diff(t) - u4, + x5.diff(t) - u5, + x6.diff(t) - u6, m*u1.diff(t) + c*u1 + k*(x1 - l0) + n1, m*u2.diff(t) + c*u2 + k*(x2 - l0) + n2, m*u3.diff(t) + c*u3 + k*(x3 - l0) + n3, m*u4.diff(t) + c*u4 + k*(x4 - l0) + n4, + m*u5.diff(t) + c*u5 + k*(x5 - l0) + n5, + m*u6.diff(t) + c*u6 + k*(x6 - l0) + n6, ]) sm.pprint(eom) @@ -87,12 +91,16 @@ u2, u3, u4, + u5, + u6, 1/m*(-c*u1 - k*(x1 - l0)), 1/m*(-c*u2 - k*(x2 - l0)), 1/m*(-c*u3 - k*(x3 - l0)), 1/m*(-c*u4 - k*(x4 - l0)), + 1/m*(-c*u5 - k*(x5 - l0)), + 1/m*(-c*u6 - k*(x6 - l0)), ]) -states = [x1, x2, x3, x4, u1, u2, u3, u4] +states = [x1, x2, x3, x4, x5, x6, u1, u2, u3, u4, u5, u6] parameters = [m, c, k, l0] par_vals = [1.0, 0.25, 1.0, 1.0] @@ -103,9 +111,9 @@ times = np.linspace(t0, tf, num=num_nodes) measurements = [] -np.random.seed(123) +#np.random.seed(123) for i in range(4): - x0 = 4.0*np.random.randn(8) + x0 = 4.0*np.random.randn(12) sol = solve_ivp(lambda t, x, p: eval_rhs(*x, *p).squeeze(), (t0, tf), x0, t_eval=times, args=(par_vals,)) measurements.append(sol.y[0, :] + @@ -135,15 +143,17 @@ # interval_value = (tf - t0) / (num_nodes - 1) -w = [1.0, 1.0, 1.0, 1.0] +w = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0] def obj(free): return interval_value*np.sum( w[0]*(free[0*num_nodes:1*num_nodes] - measurements[0])**2 + - w[1]*(free[1*num_nodes:2*num_nodes] - measurements[1])**2 + - w[2]*(free[2*num_nodes:3*num_nodes] - measurements[2])**2 + - w[3]*(free[3*num_nodes:4*num_nodes] - measurements[3])**2) + w[1]*(free[1*num_nodes:2*num_nodes] - measurements[0])**2 + + w[2]*(free[2*num_nodes:3*num_nodes] - measurements[0])**2 + + w[3]*(free[3*num_nodes:4*num_nodes] - measurements[0])**2 + + w[4]*(free[4*num_nodes:5*num_nodes] - measurements[0])**2 + + w[5]*(free[5*num_nodes:6*num_nodes] - measurements[0])**2) def obj_grad(free): @@ -151,11 +161,15 @@ def obj_grad(free): grad[:num_nodes] = 2*w[0]*interval_value*( free[0*num_nodes:1*num_nodes] - measurements[0]) grad[num_nodes:2*num_nodes] = 2*w[1]*interval_value*( - free[1*num_nodes:2*num_nodes] - measurements[1]) + free[1*num_nodes:2*num_nodes] - measurements[0]) grad[2*num_nodes:3*num_nodes] = 2*w[2]*interval_value*( - free[2*num_nodes:3*num_nodes] - measurements[2]) + free[2*num_nodes:3*num_nodes] - measurements[0]) grad[3*num_nodes:4*num_nodes] = 2*w[3]*interval_value*( - free[3*num_nodes:4*num_nodes] - measurements[3]) + free[3*num_nodes:4*num_nodes] - measurements[0]) + grad[4*num_nodes:5*num_nodes] = 2*w[4]*interval_value*( + free[4*num_nodes:5*num_nodes] - measurements[0]) + grad[5*num_nodes:6*num_nodes] = 2*w[5]*interval_value*( + free[5*num_nodes:6*num_nodes] - measurements[0]) return grad @@ -167,17 +181,19 @@ def obj_grad(free): # %% bounds = { - c: (0.01, 2.0), - k: (0.1, 10.0), + c: (0.0, 100.0), + k: (0.0, 100.0), } -noise_scale = 2.0 +noise_scale = 0.5 known_trajectories = { n1: noise_scale*np.random.randn(num_nodes), n2: noise_scale*np.random.randn(num_nodes), n3: noise_scale*np.random.randn(num_nodes), n4: noise_scale*np.random.randn(num_nodes), + n5: noise_scale*np.random.randn(num_nodes), + n6: noise_scale*np.random.randn(num_nodes), } problem = Problem( @@ -203,10 +219,9 @@ def obj_grad(free): # are used and the speeds are set to zero. The last two values are the guesses # for :math:`c` and :math:`k`, respectively. # -initial_guess = np.hstack((np.zeros(4*num_nodes), #np.array(measurements).flatten(), # x - np.zeros(4*num_nodes), # u - #[0.1, 3.0])) # c, k - [0.01, 0.1])) # c, k +initial_guess = np.hstack((np.zeros(6*num_nodes), # x + np.zeros(6*num_nodes), # u + [0.0, 0.0])) # c, k # %% # Solve the Optimization Problem @@ -232,9 +247,9 @@ def obj_grad(free): # Plot the Measurements and the Estimated Trajectories # ---------------------------------------------------- # -fig, ax = plt.subplots(8, 1, figsize=(6, 8), sharex=True) -for i in range(4): - ax[i].plot(times, measurements[i]) +fig, ax = plt.subplots(12, 1, figsize=(6, 8), sharex=True) +for i in range(6): + ax[i].plot(times, measurements[0]) problem.plot_trajectories(solution, axes=ax) # sphinx_gallery_thumbnail_number = 3 From c60a7dbcdd46da71628218e50fe50322f26eebbb Mon Sep 17 00:00:00 2001 From: "Jason K. Moore" Date: Tue, 24 Sep 2024 17:41:55 +0200 Subject: [PATCH 3/3] Use two different measurements and 3 episodes each. --- ...ot_non_contiguous_parameter_identification.py | 16 +++++++++------- 1 file changed, 9 insertions(+), 7 deletions(-) diff --git a/examples-gallery/plot_non_contiguous_parameter_identification.py b/examples-gallery/plot_non_contiguous_parameter_identification.py index f4279fe8..eafaf367 100644 --- a/examples-gallery/plot_non_contiguous_parameter_identification.py +++ b/examples-gallery/plot_non_contiguous_parameter_identification.py @@ -151,9 +151,9 @@ def obj(free): w[0]*(free[0*num_nodes:1*num_nodes] - measurements[0])**2 + w[1]*(free[1*num_nodes:2*num_nodes] - measurements[0])**2 + w[2]*(free[2*num_nodes:3*num_nodes] - measurements[0])**2 + - w[3]*(free[3*num_nodes:4*num_nodes] - measurements[0])**2 + - w[4]*(free[4*num_nodes:5*num_nodes] - measurements[0])**2 + - w[5]*(free[5*num_nodes:6*num_nodes] - measurements[0])**2) + w[3]*(free[3*num_nodes:4*num_nodes] - measurements[1])**2 + + w[4]*(free[4*num_nodes:5*num_nodes] - measurements[1])**2 + + w[5]*(free[5*num_nodes:6*num_nodes] - measurements[1])**2) def obj_grad(free): @@ -165,11 +165,11 @@ def obj_grad(free): grad[2*num_nodes:3*num_nodes] = 2*w[2]*interval_value*( free[2*num_nodes:3*num_nodes] - measurements[0]) grad[3*num_nodes:4*num_nodes] = 2*w[3]*interval_value*( - free[3*num_nodes:4*num_nodes] - measurements[0]) + free[3*num_nodes:4*num_nodes] - measurements[1]) grad[4*num_nodes:5*num_nodes] = 2*w[4]*interval_value*( - free[4*num_nodes:5*num_nodes] - measurements[0]) + free[4*num_nodes:5*num_nodes] - measurements[1]) grad[5*num_nodes:6*num_nodes] = 2*w[5]*interval_value*( - free[5*num_nodes:6*num_nodes] - measurements[0]) + free[5*num_nodes:6*num_nodes] - measurements[1]) return grad @@ -248,8 +248,10 @@ def obj_grad(free): # ---------------------------------------------------- # fig, ax = plt.subplots(12, 1, figsize=(6, 8), sharex=True) -for i in range(6): +for i in [0, 1, 2]: ax[i].plot(times, measurements[0]) +for i in [3, 4, 5]: + ax[i].plot(times, measurements[1]) problem.plot_trajectories(solution, axes=ax) # sphinx_gallery_thumbnail_number = 3