-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathclip_sample.py
executable file
·240 lines (207 loc) · 9.69 KB
/
clip_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#!/usr/bin/env python3
"""CLIP guided sampling from a diffusion model."""
import argparse
from functools import partial
from pathlib import Path
from PIL import Image
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm import trange
from CLIP import clip
from diffusion import get_model, get_models, sampling, utils
MODULE_DIR = Path(__file__).resolve().parent
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutout = F.adaptive_avg_pool2d(cutout, self.cut_size)
cutouts.append(cutout)
return torch.cat(cutouts)
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def parse_prompt(prompt):
if prompt.startswith('http://') or prompt.startswith('https://'):
vals = prompt.rsplit(':', 2)
vals = [vals[0] + ':' + vals[1], *vals[2:]]
else:
vals = prompt.rsplit(':', 1)
vals = vals + ['', '1'][len(vals):]
return vals[0], float(vals[1])
def resize_and_center_crop(image, size):
fac = max(size[0] / image.size[0], size[1] / image.size[1])
image = image.resize((int(fac * image.size[0]), int(fac * image.size[1])), Image.LANCZOS)
return TF.center_crop(image, size[::-1])
def make_cond_model_fn(model, cond_fn):
def cond_model_fn(x, t, **extra_args):
with torch.enable_grad():
x = x.detach().requires_grad_()
v = model(x, t, **extra_args)
alphas, sigmas = utils.t_to_alpha_sigma(t)
pred = x * alphas[:, None, None, None] - v * sigmas[:, None, None, None]
cond_grad = cond_fn(x, t, pred, **extra_args).detach()
v = v.detach() - cond_grad * (sigmas[:, None, None, None] / alphas[:, None, None, None])
return v
return cond_model_fn
def main():
p = argparse.ArgumentParser(description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
p.add_argument('prompts', type=str, default=[], nargs='*',
help='the text prompts to use')
p.add_argument('--images', type=str, default=[], nargs='*', metavar='IMAGE',
help='the image prompts')
p.add_argument('--batch-size', '-bs', type=int, default=1,
help='the number of images per batch')
p.add_argument('--checkpoint', type=str,
help='the checkpoint to use')
p.add_argument('--clip-guidance-scale', '-cs', type=float, default=500.,
help='the CLIP guidance scale')
p.add_argument('--cutn', type=int, default=16,
help='the number of random crops to use')
p.add_argument('--cut-pow', type=float, default=1.,
help='the random crop size power')
p.add_argument('--device', type=str,
help='the device to use')
p.add_argument('--eta', type=float, default=0.,
help='the amount of noise to add during sampling (0-1)')
p.add_argument('--init', type=str,
help='the init image')
p.add_argument('--method', type=str, default='ddpm',
choices=['ddpm', 'ddim', 'prk', 'plms', 'pie', 'plms2', 'iplms'],
help='the sampling method to use')
p.add_argument('--model', type=str, default='cc12m_1', choices=get_models(),
help='the model to use')
p.add_argument('-n', type=int, default=1,
help='the number of images to sample')
p.add_argument('--seed', type=int, default=0,
help='the random seed')
p.add_argument('--size', type=int, nargs=2,
help='the output image size')
p.add_argument('--starting-timestep', '-st', type=float, default=0.9,
help='the timestep to start at (used with init images)')
p.add_argument('--steps', type=int, default=1000,
help='the number of timesteps')
args = p.parse_args()
if args.device:
device = torch.device(args.device)
else:
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
model = get_model(args.model)()
_, side_y, side_x = model.shape
if args.size:
side_x, side_y = args.size
checkpoint = args.checkpoint
if not checkpoint:
checkpoint = MODULE_DIR / f'checkpoints/{args.model}.pth'
model.load_state_dict(torch.load(checkpoint, map_location='cpu'))
if device.type == 'cuda':
model = model.half()
model = model.to(device).eval().requires_grad_(False)
clip_model_name = model.clip_model if hasattr(model, 'clip_model') else 'ViT-B/16'
clip_model = clip.load(clip_model_name, jit=False, device=device)[0]
clip_model.eval().requires_grad_(False)
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
make_cutouts = MakeCutouts(clip_model.visual.input_resolution, args.cutn, args.cut_pow)
if args.init:
init = Image.open(utils.fetch(args.init)).convert('RGB')
init = resize_and_center_crop(init, (side_x, side_y))
init = utils.from_pil_image(init).to(device)[None].repeat([args.n, 1, 1, 1])
target_embeds, weights = [], []
for prompt in args.prompts:
txt, weight = parse_prompt(prompt)
target_embeds.append(clip_model.encode_text(clip.tokenize(txt).to(device)).float())
weights.append(weight)
for prompt in args.images:
path, weight = parse_prompt(prompt)
img = Image.open(utils.fetch(path)).convert('RGB')
img = TF.resize(img, min(side_x, side_y, *img.size),
transforms.InterpolationMode.LANCZOS)
batch = make_cutouts(TF.to_tensor(img)[None].to(device))
embeds = F.normalize(clip_model.encode_image(normalize(batch)).float(), dim=-1)
target_embeds.append(embeds)
weights.extend([weight / args.cutn] * args.cutn)
if not target_embeds:
raise RuntimeError('At least one text or image prompt must be specified.')
target_embeds = torch.cat(target_embeds)
weights = torch.tensor(weights, device=device)
if weights.sum().abs() < 1e-3:
raise RuntimeError('The weights must not sum to 0.')
weights /= weights.sum().abs()
clip_embed = F.normalize(target_embeds.mul(weights[:, None]).sum(0, keepdim=True), dim=-1)
clip_embed = clip_embed.repeat([args.n, 1])
torch.manual_seed(args.seed)
def cond_fn(x, t, pred, clip_embed):
if min(pred.shape[2:4]) < 256:
pred = F.interpolate(pred, scale_factor=2, mode='bilinear', align_corners=False)
clip_in = normalize(make_cutouts((pred + 1) / 2))
image_embeds = clip_model.encode_image(clip_in).view([args.cutn, x.shape[0], -1])
losses = spherical_dist_loss(image_embeds, clip_embed[None])
loss = losses.mean(0).sum() * args.clip_guidance_scale
grad = -torch.autograd.grad(loss, x)[0]
return grad
def run(x, steps, clip_embed):
if hasattr(model, 'clip_model'):
extra_args = {'clip_embed': clip_embed}
cond_fn_ = cond_fn
else:
extra_args = {}
cond_fn_ = partial(cond_fn, clip_embed=clip_embed)
if args.clip_guidance_scale:
model_fn = make_cond_model_fn(model, cond_fn_)
else:
model_fn = model
if args.method == 'ddpm':
return sampling.sample(model_fn, x, steps, 1., extra_args)
if args.method == 'ddim':
return sampling.sample(model_fn, x, steps, args.eta, extra_args)
if args.method == 'prk':
return sampling.prk_sample(model_fn, x, steps, extra_args)
if args.method == 'plms':
return sampling.plms_sample(model_fn, x, steps, extra_args)
if args.method == 'pie':
return sampling.pie_sample(model_fn, x, steps, extra_args)
if args.method == 'plms2':
return sampling.plms2_sample(model_fn, x, steps, extra_args)
if args.method == 'iplms':
return sampling.iplms_sample(model_fn, x, steps, extra_args)
assert False
def run_all(n, batch_size):
x = torch.randn([n, 3, side_y, side_x], device=device)
t = torch.linspace(1, 0, args.steps + 1, device=device)[:-1]
if model.min_t == 0:
steps = utils.get_spliced_ddpm_cosine_schedule(t)
else:
steps = utils.get_ddpm_schedule(t)
if args.init:
steps = steps[steps < args.starting_timestep]
alpha, sigma = utils.t_to_alpha_sigma(steps[0])
x = init * alpha + x * sigma
for i in trange(0, n, batch_size):
cur_batch_size = min(n - i, batch_size)
outs = run(x[i:i+cur_batch_size], steps, clip_embed[i:i+cur_batch_size])
for j, out in enumerate(outs):
utils.to_pil_image(out).save(f'out_{i + j:05}.png')
try:
run_all(args.n, args.batch_size)
except KeyboardInterrupt:
pass
if __name__ == '__main__':
main()