-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpianolizer.js
718 lines (672 loc) · 20.6 KB
/
pianolizer.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
/**
* @file pianolizer.js
* @description Musical tone pitch detection library based on the Sliding Discrete Fourier Transform algorithm.
* @see {@link http://github.com/creaktive/pianolizer}
* @author Stanislaw Pusep
* @license MIT
*/
/**
* Convenience wrapper that ties together the rest of this library, with sane defaults.
*
* @export
* @class Pianolizer
* @example
* // a common sample rate
* const pianolizer = new Pianolizer(44100)
* const input = new Float32Array(128)
* // fill the input buffer with the samples
* let output
* // average over a 0.05 seconds window
* output = pianolizer.process(input, 0.05)
*/
export default class Pianolizer {
/**
* Creates an instance of Pianolizer.
* @param {Number} sampleRate This directly influences the memory usage: 44100Hz or 48000Hz will both allocate a buffer of 64KB (provided 32-bit floats are used).
* @param {Number} [keysNum=61] Most pianos will have 61 keys.
* @param {Number} [referenceKey=33] Key index for the pitchFork reference (A4 is the default).
* @param {Number} [pitchFork=440.0] A4 is 440 Hz by default.
* @param {Number} [tolerance=1.0] frequency tolerance, range (0.0, 1.0].
* @memberof Pianolizer
*/
constructor (
sampleRate,
keysNum = 61,
referenceKey = 33,
pitchFork = 440.0,
tolerance = 1.0
) {
this.slidingDFT = new SlidingDFT(
new PianoTuning(
sampleRate,
keysNum,
referenceKey,
pitchFork,
tolerance
),
-1
)
}
/**
* Process a batch of samples.
*
* @param {Float32Array} samples Array with the batch of samples to process.
* @param {Number} [averageWindowInSeconds=0] Adjust the moving average window size.
* @return {Float32Array} Snapshot of the levels after processing all the samples.
* @memberof Pianolizer
*/
process (samples, averageWindowInSeconds = 0) {
return this.slidingDFT.process(samples, averageWindowInSeconds)
}
}
/**
* Minimal implementation of Complex numbers required for the Discrete Fourier Transform computations.
*
* @class Complex
*/
export class Complex {
/**
* Creates an instance of Complex.
* @param {Number} [re=0] Real part.
* @param {Number} [im=0] Imaginary part.
* @memberof Complex
* @example
* let dft = new Complex()
* dft = dft
* .sub(previousComplexSample)
* .add(currentComplexSample)
* .mul(coeff)
* console.log(dft.magnitude)
*/
constructor (re = 0, im = 0) {
this.re = re
this.im = im
}
/**
* Complex number addition.
*
* @param {Complex} z Complex number to add.
* @return {Complex} Sum of the instance and z.
* @memberof Complex
*/
add (z) {
return new Complex(
this.re + z.re,
this.im + z.im
)
}
/**
* Complex number subtraction.
*
* @param {Complex} z Complex number to subtract.
* @return {Complex} Sum of the instance and z.
* @memberof Complex
*/
sub (z) {
return new Complex(
this.re - z.re,
this.im - z.im
)
}
/**
* Complex number multiplication.
*
* @param {Complex} z Complex number to multiply.
* @return {Complex} Product of the instance and z.
* @memberof Complex
*/
mul (z) {
return new Complex(
this.re * z.re - this.im * z.im,
this.re * z.im + this.im * z.re
)
}
/**
* Complex number norm value.
*
* @readonly
* @memberof Complex
*/
get norm () {
return this.re * this.re + this.im * this.im
}
/**
* Complex number magnitude.
*
* @readonly
* @memberof Complex
*/
get magnitude () {
return Math.sqrt(this.norm)
}
}
/**
* Reasonably fast Ring Buffer implementation.
* Caveat: the size of the allocated memory is always a power of two!
*
* @class RingBuffer
* @example
* const rb = new RingBuffer(100)
* for (let i = 0; i < 200; i++) {
* rb.write(i)
* }
* // prints 174:
* console.log(rb.read(25))
*/
export class RingBuffer {
/**
* Creates an instance of RingBuffer.
* @param {Number} requestedSize How long the RingBuffer is expected to be.
* @memberof RingBuffer
*/
constructor (requestedSize) {
const bits = Math.ceil(Math.log2(requestedSize)) | 0
// console.info(`Allocating RingBuffer for ${bits} address bits`)
this.size = 1 << bits
this.mask = this.size - 1
this.buffer = new Float32Array(this.size)
this.index = 0
}
/**
* Shifts the RingBuffer and stores the value in the latest position.
*
* @param {Number} value Value to be stored in an Float32Array.
* @memberof RingBuffer
*/
write (value) {
this.index &= this.mask
this.buffer[this.index++] = value
}
/**
* Retrieves the value stored at the position.
*
* @param {Number} position Position within the RingBuffer.
* @return {Number} The value at the position.
* @memberof RingBuffer
*/
read (position) {
return this.buffer[(this.index + (~position)) & this.mask]
}
}
/**
* Discrete Fourier Transform computation for one single bin.
*
* @class DFTBin
* @example
* // Detect a 441Hz tone when the sample rate is 44100Hz
* const N = 1700
* const bin = new DFTBin(17, N)
* const rb = new RingBuffer(N)
*
* for (let i = 0; i < 2000; i++) {
* const currentSample = sin(Math.PI / 50 * i) // sine wave oscillator
* rb.write(currentSample);
* // previousSample should be taken N samples before currentSample is taken
* const previousSample = rb.read(N)
* bin.update(previousSample, currentSample)
* }
*
* console.log(bin.rms)
* console.log(bin.amplitudeSpectrum)
* console.log(bin.normalizedAmplitudeSpectrum)
* console.log(bin.logarithmicUnitDecibels)
*/
export class DFTBin {
/**
* Creates an instance of DFTBin.
* @param {Number} k Frequency divided by the bandwidth (must be an integer!).
* @param {Number} N Sample rate divided by the bandwidth (must be an integer!).
* @memberof DFTBin
* @example
* // (provided the sample rate of 44100Hz)
* // center: 439.96Hz
* // bandwidth: 25.88Hz
* const bin = new DFTBin(17, 1704)
* // samples are *NOT* complex!
* bin.update(previousSample, currentSample)
*/
constructor (k, N) {
if (k === 0) {
throw new RangeError('k=0 (DC) not implemented')
} else if (N === 0) {
throw new RangeError('N=0 is so not supported (Y THO?)')
} else if (k !== Math.round(k)) {
throw new RangeError('k must be an integer')
} else if (N !== Math.round(N)) {
throw new RangeError('N must be an integer')
}
this.k = k
this.N = N
const q = 2 * Math.PI * k / N
this.r = 2 / N
this.coeff = new Complex(Math.cos(q), -Math.sin(q))
this.dft = new Complex()
this.totalPower = 0.0
this.referenceAmplitude = 1.0 // 0 dB level
}
/**
* Do the Sliding DFT computation.
*
* @param {Number} previousSample Sample from N frames ago.
* @param {Number} currentSample The latest sample.
* @memberof DFTBin
*/
update (previousSample, currentSample) {
this.totalPower += currentSample * currentSample
this.totalPower -= previousSample * previousSample
const previousComplexSample = new Complex(previousSample, 0)
const currentComplexSample = new Complex(currentSample, 0)
this.dft = this.dft
.sub(previousComplexSample)
.add(currentComplexSample)
.mul(this.coeff)
}
/**
* Root Mean Square.
*
* @readonly
* @memberof DFTBin
*/
get rms () {
return Math.sqrt(this.totalPower / this.N)
}
/**
* Amplitude spectrum in volts RMS.
*
* @see {@link https://www.sjsu.edu/people/burford.furman/docs/me120/FFT_tutorial_NI.pdf}
* @readonly
* @memberof DFTBin
*/
get amplitudeSpectrum () {
return Math.SQRT2 * this.dft.magnitude / this.N
}
/**
* Normalized amplitude (always returns a value between 0.0 and 1.0).
* This is well suited to detect pure tones, and can be used to decode DTMF or FSK modulation.
* Depending on the application, you might need Math.sqrt(d.normalizedAmplitudeSpectrum).
*
* @readonly
* @memberof DFTBin
*/
get normalizedAmplitudeSpectrum () {
return this.totalPower > 0
// ? this.amplitudeSpectrum / this.rms
? this.r * this.dft.norm / this.totalPower // same as the square of the above, but uses less FLOPs
: 0
}
/**
* Using this unit of measure, it is easy to view wide dynamic ranges; that is,
* it is easy to see small signal components in the presence of large ones.
*
* @readonly
* @memberof DFTBin
*/
get logarithmicUnitDecibels () {
return 20 * Math.log10(this.amplitudeSpectrum / this.referenceAmplitude)
}
}
/**
* Base class for FastMovingAverage & HeavyMovingAverage. Must implement the update(levels) method.
*
* @class MovingAverage
*/
export class MovingAverage {
/**
* Creates an instance of MovingAverage.
* @param {Number} channels Number of channels to process.
* @param {Number} sampleRate Sample rate, used to convert between time and amount of samples.
* @memberof MovingAverage
*/
constructor (channels, sampleRate) {
this.channels = channels
this.sampleRate = sampleRate
this.sum = new Float32Array(channels)
this.averageWindow = null
}
/**
* Get the current window size (in seconds).
*
* @memberof MovingAverage
*/
get averageWindowInSeconds () {
return this.averageWindow / this.sampleRate
}
/**
* Set the current window size (in seconds).
*
* @memberof MovingAverage
*/
set averageWindowInSeconds (value) {
this.targetAverageWindow = Math.round(value * this.sampleRate)
if (this.averageWindow === null) {
this.averageWindow = this.targetAverageWindow
}
}
/**
* Adjust averageWindow in steps.
*
* @memberof MovingAverage
*/
updateAverageWindow () {
if (this.targetAverageWindow > this.averageWindow) {
this.averageWindow++
} else if (this.targetAverageWindow < this.averageWindow) {
this.averageWindow--
}
}
/**
* Retrieve the current moving average value for a given channel.
*
* @param {Number} n Number of channel to retrieve the moving average for.
* @return {Number} Current moving average value for the specified channel.
* @memberof MovingAverage
*/
read (n) {
return this.sum[n] / this.averageWindow
}
}
/**
* Moving average of the output (effectively a low-pass to get the general envelope).
* Fast approximation of the MovingAverage; requires significantly less memory.
*
* @see {@link https://www.daycounter.com/LabBook/Moving-Average.phtml}
* @class FastMovingAverage
* @extends {MovingAverage}
* @example
* // initialize the moving average object
* movingAverage = new FastMovingAverage(
* levels.length,
* sampleRate
* )
* // averageWindowInSeconds can be updated on-fly!
* movingAverage.averageWindowInSeconds = 0.05
* // for every processed frame
* movingAverage.update(levels)
* // overwrite the levels with the averaged ones
* for (let band = 0; band < levels.length; band++) {
* levels[band] = movingAverage.read(band)
* }
*/
export class FastMovingAverage extends MovingAverage {
/**
* Update the internal state with from the input.
*
* @param {Float32Array} levels Array of level values, one per channel.
* @memberof FastMovingAverage
*/
update (levels) {
this.updateAverageWindow()
for (let n = 0; n < this.channels; n++) {
const currentSum = this.sum[n]
this.sum[n] = this.averageWindow
? currentSum + levels[n] - currentSum / this.averageWindow
: levels[n]
}
}
}
/**
* Moving average of the output (effectively a low-pass to get the general envelope).
* This is the "proper" implementation; it does require lots of memory allocated for the RingBuffers!
*
* @class HeavyMovingAverage
* @extends {MovingAverage}
* @example
* // initialize the moving average object
* movingAverage = new HeavyMovingAverage(
* levels.length,
* sampleRate,
* Math.round(sampleRate * maxAverageWindowInSeconds)
* )
* // averageWindowInSeconds can be updated on-fly!
* movingAverage.averageWindowInSeconds = 0.05
* // for every processed frame
* movingAverage.update(levels)
* // overwrite the levels with the averaged ones
* for (let band = 0; band < levels.length; band++) {
* levels[band] = movingAverage.read(band)
* }
*/
export class HeavyMovingAverage extends MovingAverage {
/**
* Creates an instance of HeavyMovingAverage.
* @param {Number} channels Number of channels to process.
* @param {Number} sampleRate Sample rate, used to convert between time and amount of samples.
* @param {Number} [maxWindow=sampleRate] Preallocate buffers of this size, per channel.
* @memberof HeavyMovingAverage
*/
constructor (channels, sampleRate, maxWindow = sampleRate) {
super(channels, sampleRate)
this.history = []
for (let n = 0; n < channels; n++) {
this.history.push(new RingBuffer(maxWindow))
}
}
/**
* Update the internal state with from the input.
*
* @param {Float32Array} levels Array of level values, one per channel.
* @memberof HeavyMovingAverage
*/
update (levels) {
for (let n = 0; n < this.channels; n++) {
const value = levels[n]
this.history[n].write(value)
this.sum[n] += value
if (this.targetAverageWindow === this.averageWindow) {
this.sum[n] -= this.history[n].read(this.averageWindow)
} else if (this.targetAverageWindow < this.averageWindow) {
this.sum[n] -= this.history[n].read(this.averageWindow)
this.sum[n] -= this.history[n].read(this.averageWindow - 1)
}
}
this.updateAverageWindow()
}
}
/**
* Base class for PianoTuning. Must implement this.mapping array.
*
* @class Tuning
* @example
* // Proof of concept; there's no advantage in using Sliding DFT if we need to cover the full spectrum
* export class RegularTuning extends Tuning {
* constructor (sampleRate, bands) {
* super(sampleRate, bands)
* this.mapping = []
* for (let band = 0; band < this.mapping.length; band++) {
* this.mapping.push({ k: band, N: bands * 2 })
* }
* }
* }
*/
export class Tuning {
/**
* Creates an instance of Tuning.
* @param {Number} sampleRate Self-explanatory.
* @param {Number} bands How many filters.
*/
constructor (sampleRate, bands) {
this.sampleRate = sampleRate
this.bands = bands
}
/**
* Approximate k & N values for DFTBin.
*
* @param {Number} frequency In Hz.
* @param {Number} bandwidth In Hz.
* @return {Object} Object containing k & N that best approximate for the given frequency & bandwidth.
* @memberof Tuning
*/
frequencyAndBandwidthToKAndN (frequency, bandwidth) {
let N = Math.floor(this.sampleRate / bandwidth)
const k = Math.floor(frequency / bandwidth)
// find such N that (sampleRate * (k / N)) is the closest to freq
// (sacrifices the bandwidth precision; bands will be *wider*, and, therefore, will overlap a bit!)
let delta = Math.abs(this.sampleRate * (k / N) - frequency)
for (let i = N - 1; ; i--) {
const tmpDelta = Math.abs(this.sampleRate * (k / i) - frequency)
if (tmpDelta < delta) {
delta = tmpDelta
N = i
} else {
return { k, N }
}
}
}
}
/**
* Essentially, creates an instance that provides the 'mapping',
* which is an array of objects providing the values for i, k & N.
*
* @class PianoTuning
* @extends {Tuning}
* @example
* // a common sample rate
* const tuning = new PianoTuning(44100)
*
* // prints 17 for the note C2:
* console.log(tuning.mapping[0].k)
* // prints 11462 for the note C2:
* console.log(tuning.mapping[0].N)
*
* // prints 17 for the note C7:
* console.log(tuning.mapping[60].k)
* // prints 358 for the note C7:
* console.log(tuning.mapping[60].N)
*/
export class PianoTuning extends Tuning {
/**
* Creates an instance of PianoTuning.
* @param {Number} sampleRate This directly influences the memory usage: 44100Hz or 48000Hz will both allocate a buffer of 64KB (provided 32-bit floats are used).
* @param {Number} [keysNum=61] Most pianos will have 61 keys.
* @param {Number} [referenceKey=33] Key index for the pitchFork reference (A4 is the default).
* @param {Number} [pitchFork=440.0] A4 is 440 Hz by default.
* @param {Number} [tolerance=1.0] frequency tolerance, range (0.0, 1.0].
* @memberof PianoTuning
*/
constructor (
sampleRate,
keysNum = 61,
referenceKey = 33,
pitchFork = 440.0,
tolerance = 1.0
) {
super(sampleRate, keysNum)
this.pitchFork = pitchFork
this.referenceKey = referenceKey
this.tolerance = tolerance
}
/**
* Converts the piano key number to it's fundamental frequency.
*
* @see {@link https://en.wikipedia.org/wiki/Piano_key_frequencies}
* @param {Number} key
* @return {Number} frequency
* @memberof PianoTuning
*/
keyToFreq (key) {
return this.pitchFork * Math.pow(2, (key - this.referenceKey) / 12)
}
/**
* Computes the array of objects that specify the frequencies to analyze.
*
* @readonly
* @memberof PianoTuning
*/
get mapping () {
const output = []
for (let key = 0; key < this.bands; key++) {
const frequency = this.keyToFreq(key)
const bandwidth = 2 * (this.keyToFreq(key + 0.5 * this.tolerance) - frequency)
output.push(this.frequencyAndBandwidthToKAndN(frequency, bandwidth))
}
return output
}
}
/**
* Sliding Discrete Fourier Transform implementation for (westerns) musical frequencies.
*
* @see {@link https://www.comm.utoronto.ca/~dimitris/ece431/slidingdft.pdf}
* @class SlidingDFT
* @example
* // a common sample rate
* const tuning = new PianoTuning(44100)
* // no moving average
* const slidingDFT = new SlidingDFT(tuning)
* const input = new Float32Array(128)
* // fill the input buffer with the samples
* let output
* // just process; no moving average
* output = slidingDFT.process(input)
*/
export class SlidingDFT {
/**
* Creates an instance of SlidingDFT.
* @param {Tuning} tuning Tuning instance (a class derived from Tuning; for instance, PianoTuning).
* @param {Number} [maxAverageWindowInSeconds=0] Positive values are passed to MovingAverage implementation; negative values trigger FastMovingAverage implementation. Zero disables averaging.
* @memberof SlidingDFT
*/
constructor (tuning, maxAverageWindowInSeconds = 0) {
this.sampleRate = tuning.sampleRate
this.bands = tuning.bands
this.bins = []
this.levels = new Float32Array(this.bands)
let maxN = 0
tuning.mapping.forEach((band) => {
this.bins.push(new DFTBin(band.k, band.N))
maxN = Math.max(maxN, band.N)
})
this.ringBuffer = new RingBuffer(maxN)
if (maxAverageWindowInSeconds > 0) {
this.movingAverage = new HeavyMovingAverage(
this.bands,
this.sampleRate,
Math.round(this.sampleRate * maxAverageWindowInSeconds)
)
} else if (maxAverageWindowInSeconds < 0) {
this.movingAverage = new FastMovingAverage(
this.bands,
this.sampleRate
)
} else {
this.movingAverage = null
}
}
/**
* Process a batch of samples.
*
* @param {Float32Array} samples Array with the batch of samples to process. Value range is irrelevant (can be from -1.0 to 1.0 or 0 to 255 or whatever, as long as it is consistent).
* @param {Number} [averageWindowInSeconds=0] Adjust the moving average window size.
* @return {Float32Array} Snapshot of the *squared* levels after processing all the samples. Value range is between 0.0 and 1.0. Depending on the application, you might need Math.sqrt() of the level values (for visualization purposes it is actually better as is).
* @memberof SlidingDFT
*/
process (samples, averageWindowInSeconds = 0) {
if (this.movingAverage !== null) {
this.movingAverage.averageWindowInSeconds = averageWindowInSeconds
}
const windowSize = samples.length
const binsNum = this.bins.length
// store in the ring buffer & process
for (let i = 0; i < windowSize; i++) {
const currentSample = samples[i]
samples[i] = 0
this.ringBuffer.write(currentSample)
for (let band = 0; band < binsNum; band++) {
const bin = this.bins[band]
const previousSample = this.ringBuffer.read(bin.N)
bin.update(previousSample, currentSample)
this.levels[band] = bin.normalizedAmplitudeSpectrum
// this.levels[band] = bin.logarithmicUnitDecibels
}
if (this.movingAverage !== null) {
this.movingAverage.update(this.levels)
}
}
// snapshot of the levels, after smoothing
if (this.movingAverage !== null && this.movingAverage.averageWindow > 0) {
for (let band = 0; band < binsNum; band++) {
this.levels[band] = this.movingAverage.read(band)
}
}
return this.levels
}
}