-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnsga-ii.cpp
272 lines (229 loc) · 6.42 KB
/
nsga-ii.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#include "nsga-ii.h"
#include "Alignment.h"
#include "Network.h"
#include <vector>
#include <unordered_map>
#include <unordered_set>
#include <string>
#include <iostream>
using namespace std;
//this function assumes fitnesses have already been assigned
//todo: add check that that's the case.
vector<vector<Alignment*> > nonDominatedSort(const vector<Alignment*>& in){
vector<vector<Alignment*> > fronts(1); //know there is at least one front.
for(int i = 0; i < in.size(); i++){
in[i]->numThatDominate = 0;
in[i]->dominated.clear();
for(int j = 0; j < in.size(); j++){
if(i == j){
continue;
}
if(dominates(in[i]->fitness,in[j]->fitness)){
in[i]->dominated.push_back(in[j]);
}
else if(dominates(in[j]->fitness,in[i]->fitness)){
in[i]->numThatDominate++;
}
}
if(in[i]->numThatDominate == 0){
in[i]->domRank = 0;
fronts[0].push_back(in[i]);
}
}
int i = 0;
while(!(fronts.size() == i || fronts[i].empty())){
vector<Alignment*> nextFront;
for(int j = 0; j < fronts[i].size(); j++){
for(auto q : fronts[i][j]->dominated){
q->numThatDominate--;
if(q->numThatDominate == 0){
q->domRank = i+1;
nextFront.push_back(q);
}
}
}
i++;
if(!nextFront.empty()){
fronts.push_back(nextFront);
}
}
int frontsTotal = 0;
for(int i = 0; i<fronts.size(); i++){
frontsTotal += fronts[i].size();
}
return fronts;
}
void normalizeFitnesses(vector<Alignment*>& in){
//for each objective:
for(int i = 0; i < in[0]->fitness.size(); i++){
//compute max of this objective
double max = 0.0;
for(auto p : in){
if(p->fitness[i] > max){
max = p->fitness[i];
}
}
//set normalized fitness of all alns for this objective
for(auto p : in){
p->fitnessNormalized.push_back(p->fitness[i]/max);
}
}
}
//takes a front as input and assigns crowdDist to each element
//note: results meaningless if input is not non-dominated set
//note: normalizeFitnesses MUST be called first!
void setCrowdingDists(vector<Alignment*>& in){
//init all to zero
for(auto i : in){
i->crowdDist = 0.0;
}
int numObjs = in[0]->fitness.size();
int numAlns = in.size();
//for each objective m
for(int m = 0; m < numObjs; m++){
//sort by objective m
sort(in.begin(), in.end(),
[m](const Alignment* a, const Alignment* b){
return a->fitnessNormalized[m] < b->fitnessNormalized[m];
});
//set boundary points to max dist
in[0]->crowdDist = numeric_limits<double>::max();
in[numAlns-1]->crowdDist = numeric_limits<double>::max();
//increment crowding dist for the current objective
double denom = in[numAlns-1]->fitnessNormalized[m] - in[0]->fitnessNormalized[m];
for(int i = 1; i< (numAlns-1); i++){
double numerator = in[i+1]->fitnessNormalized[m] - in[i-1]->fitnessNormalized[m];
in[i]-> crowdDist += (numerator/denom);
}
}
}
//returns true if aln1 Pareto dominates aln2
bool dominates(const vector<double>& fitness1, const vector<double>& fitness2){
bool oneBigger = false;
for(int i = 0; i < fitness1.size(); i++){
if(fitness1[i] < fitness2[i]){
return false;
}
if(fitness1[i] > fitness2[i]){
oneBigger = true;
}
}
return oneBigger;
}
bool crowdedComp(Alignment* aln1, Alignment* aln2){
if(aln1->domRank == -1 || aln2->domRank == -1){
cout<<"Danger: domRank uninitialized in crowdedComp!"<<endl;
}
if(aln1->crowdDist < 0.0 || aln2->crowdDist < 0.0){
cout<<"Danger: crowdDist uninitialized in crowdedComp!"<<endl;
}
return (aln1->domRank < aln2->domRank)
|| (aln1->domRank == aln2->domRank &&
aln1->crowdDist > aln2->crowdDist);
}
//preconditions: tournSize smaller than in
//all in elems have crowdDist and domCount calculated
//returns two alignment pointers
vector<Alignment*> binSel(RandGenT& prng,
const vector<Alignment*>& in,
unsigned int tournSize){
vector<unsigned int> indices(in.size());
for(int i = 0; i < in.size(); i++){
indices[i] = i;
}
shuffle(indices.begin(),indices.end(), prng);
//grab the best of a random subset of in
sort(indices.begin(),indices.begin()+tournSize,
[&in](unsigned int a, unsigned int b){
return crowdedComp(in.at(a),in.at(b));
});
vector<Alignment*> toReturn;
toReturn.push_back(in.at(indices[0]));
toReturn.push_back(in.at(indices[1]));
return toReturn;
}
void reportStats(const vector<Alignment*>& in,
const vector<fitnessName> fitnessNames,
bool verbose, bool alnDiversity){
for(int i =0; i < in[0]->fitness.size(); i++){
double sum = 0.0;
double max = 0.0;
double min = numeric_limits<double>::max();
double mean;
for(auto p : in){
double temp = p->fitness[i];
if(temp > max)
max = temp;
if(temp < min)
min = temp;
sum += p->fitness[i];
}
mean = sum/double(in.size());
double std_dev = 0.0;
for(auto p : in){
double temp = p->fitness[i] - mean;
std_dev += temp*temp;
}
std_dev /= double(in.size());
std_dev = sqrt(std_dev);
if(verbose){
cout<<"Max of objective "<<fitnessNameToStr(fitnessNames[i])<<" is "<<max<<endl;
cout<<"Min of objective "<<fitnessNameToStr(fitnessNames[i])<<" is "<<min<<endl;
cout<<"Mean of objective "<<fitnessNameToStr(fitnessNames[i])<<" is "<<mean<<endl;
cout<<"Std. Dev. of objective "<<fitnessNameToStr(fitnessNames[i])
<<" is "<<std_dev<<endl;
}
else{
cout<<'\t'<<min<<'\t'<<max<<'\t'<<mean<<'\t'<<std_dev;
}
}
//check on pairwise alignment similarity
if(alnDiversity){
double simSum = 0.0;
double minSim = 100.0;
double maxSim = 0.0;
for(auto p : in){
for(auto q : in){
if(p == q){
continue;
}
else{
double sim = alnSimilarity(p,q);
if(sim < minSim){
minSim = sim;
}
if(sim > maxSim){
maxSim = sim;
}
simSum += sim;
}
}
}
if(verbose){
cout<<"Mean pairwise aln similarity: "<<(simSum/double(in.size()*(in.size()-1)))<<endl;
cout<<"Max pairwise similarity: "<<maxSim<<endl;
cout<<"Min pairwise similarity: "<<minSim<<endl;
}
else{
cout<<'\t'<<(simSum/double(in.size()*(in.size()-1)));
cout<<'\t'<<maxSim;
cout<<'\t'<<minSim;
}
}
}
double alnSimilarity(const Alignment* aln1, const Alignment* aln2){
int count = 0;
for(int i = 0; i < aln1->actualSize; i++){
if(aln1->alnMask[i] && aln2->alnMask[i] && aln1->aln[i] == aln2->aln[i]){
count++;
}
}
int size1 = aln1->alnSize();
int size2 = aln2->alnSize();
if(size1 <= size2){
return double(count)/double(size1);
}
else{
return double(count)/double(size2);
}
}