-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSort2.lean
168 lines (137 loc) · 4.96 KB
/
Sort2.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
class Preorder (α) extends LE α where
trans {x y z : α} : x ≤ y → y ≤ z → x ≤ z
refl (x : α) : x ≤ x
class TotalPreorder (α) extends Preorder α where
total (x y : α) : x ≤ y ∨ y ≤ x
refl x := (total x x).elim id id
theorem le_of_not_le [I : TotalPreorder α] {x y : α} (h : ¬x ≤ y) : y ≤ x :=
(I.total x y).elim (False.elim ∘ h) id
instance : TotalPreorder Nat where
trans := Nat.le_trans
total := Nat.le_total
inductive List.Chain (R : α → α → Prop) : α → List α → Prop
| nil : Chain R a []
| cons : R a b → Chain R b l → Chain R a (b :: l)
def List.Chain' (R : α → α → Prop) : List α → Prop
| [] => True
| a :: l => Chain R a l
inductive List.Perm : List α → List α → Prop
| nil : Perm [] []
| cons (x) : Perm l₁ l₂ → Perm (x :: l₁) (x :: l₂)
| swap (x y l) : Perm (y :: x :: l) (x :: y :: l)
| trans : Perm l₁ l₂ → Perm l₂ l₃ → Perm l₁ l₃
theorem List.Perm.refl : (l : List α) → Perm l l
| [] => nil
| x :: l => cons x (refl l)
theorem List.Perm.symm (h : Perm l₂ l₁) : Perm l₁ l₂ := by
induction h with
| nil => exact nil
| cons x _ ih => exact cons x ih
| swap x y l => exact swap y x l
| trans _ _ ih₁ ih₂ => exact trans ih₂ ih₁
theorem List.Perm.swap' (y) (h : Perm l₁ (x :: l₂)) : Perm (y :: l₁) (x :: y :: l₂) :=
trans (cons y h) (swap x y l₂)
theorem List.Perm.length_eq (h : Perm l₁ l₂) : length l₁ = length l₂ := by
induction h <;> simp [*]
theorem List.Perm.middle (x : α) : ∀ l₁ l₂, Perm (l₁ ++ x :: l₂) (x :: l₁ ++ l₂)
| [], _ => refl _
| y :: l₁, l₂ => swap' y (middle x l₁ l₂)
theorem List.Perm.inv : Perm (l₁ ++ x :: r₁) (l₂ ++ x :: r₂) → Perm (l₁ ++ r₁) (l₂ ++ r₂) := by
generalize h₁ : l₁ ++ x :: r₁ = s₁
generalize h₂ : l₂ ++ x :: r₂ = s₂
intro h
induction h generalizing l₁ r₁ l₂ r₂ with
| nil => sorry
| cons y h ih =>
cases l₁ <;> cases l₂ <;> cases h₁ <;> cases h₂
. exact h
. exact trans h (middle _ _ _)
. exact trans (symm (middle _ _ _)) h
. exact cons y (ih rfl rfl)
| swap _ _ _ => sorry
| trans _ _ _ _ => sorry
theorem List.Perm.cons_inv (h : Perm (x :: l₁) (x :: l₂)) : Perm l₁ l₂ :=
inv (l₁ := []) (l₂ := []) h
--theorem List.Perm.swap'_inv (h : Perm (y :: x :: l₁) (x :: y :: l₂)) : Perm l₁ l₂ :=
--cons_inv (inv (l₁ := [y]) (l₂ := []) h)
theorem List.Perm.swap'_inv (h : Perm (y :: l₁) (x :: y :: l₂)) : Perm l₁ (x :: l₂) :=
sorry
class ComparisonSort (f : ∀ {α} [I : LE α] [DecidableRel I.le], List α → List α) where
perm [I : LE α] [DecidableRel I.le] (l : List α) : (f l).Perm l
sort [I : TotalPreorder α] [DecidableRel I.le] (l : List α) : (f l).Chain' I.le
section
variable [I : LE α] [DecidableRel I.le]
def insert (x : α) : List α → List α
| [] => [x]
| y :: l =>
if x ≤ y
then x :: y :: l
else y :: insert x l
def insertionSort : List α → List α
| [] => []
| x :: l => insert x (insertionSort l)
theorem perm_insert (x : α) (l) : (insert x l).Perm (x :: l) := by
induction l
case nil => simp [insert]
case cons y l ih =>
unfold insert
split
. simp
simp
--. exact .trans (.cons _ ih) (.swap x y l)
end
theorem sort_insert [I : TotalPreorder α] [DecidableRel I.le] (x) (h : l.Chain' I.le) : (insert x l).Chain' I.le := by
induction l
case nil => exact .nil
case cons y l ih =>
unfold insert
split
case _ h' => exact .cons h' h
case _ h' =>
have h' := le_of_not_le h'
dsimp [List.Chain']
cases h
case nil => exact .cons h' .nil
case cons z l h₁ h₂ =>
specialize ih h₁
unfold insert at ih ⊢
split
case _ h'' =>
simp [h''] at ih
exact .cons h' ih
case _ h'' =>
simp [h''] at ih
exact .cons h₂ ih
instance : ComparisonSort @insertionSort where
perm l := by
induction l
case nil => exact .nil
case cons x l ih => exact .trans (perm_insert x (insertionSort l)) (.cons x ih)
sort l := by
induction l
case nil => exact trivial
case cons x l ih => exact sort_insert x ih
section
variable [I : LE α] [DecidableRel I.le]
def select (x : α) : List α → α × List α
| [] => (x, [])
| y :: l =>
if x ≤ y
then ((select x l).1, y :: (select x l).2)
else ((select y l).1, x :: (select y l).2)
theorem perm_select (x : α) (l) : ((select x l).1 :: (select x l).2).Perm (x :: l) := by
induction l generalizing x
case nil => exact .cons x .nil
case cons y l ih =>
unfold select
split
. exact .trans (.trans (.swap y _ _) (.cons y (ih x))) (.swap x y l)
. exact .trans (.swap x _ _) (.cons _ (ih y))
def selectionSort : List α → List α
| [] => []
| x :: l =>
let (y, l') := select x l
y :: selectionSort l'
termination_by _ l => l.length
end
-- todo: comparison in monad, time complexity