-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsub-03_ses-002.html
1038 lines (953 loc) · 82.6 KB
/
sub-03_ses-002.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.12: http://docutils.sourceforge.net/" />
<title></title>
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js" integrity="sha384-ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css" integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO" crossorigin="anonymous">
<style type="text/css">
.sub-report-title {}
.run-title {}
h1 { padding-top: 35px; }
h2 { padding-top: 20px; }
h3 { padding-top: 15px; }
.elem-desc {}
.elem-caption {
margin-top: 15px
margin-bottom: 0;
}
.elem-filename {}
div.elem-image {
width: 100%;
page-break-before:always;
}
.elem-image object.svg-reportlet {
width: 100%;
padding-bottom: 5px;
}
body {
padding: 65px 10px 10px;
}
.boiler-html {
font-family: "Bitstream Charter", "Georgia", Times;
margin: 20px 25px;
padding: 10px;
background-color: #F8F9FA;
}
div#boilerplate pre {
margin: 20px 25px;
padding: 10px;
background-color: #F8F9FA;
}
#errors div, #errors p {
padding-left: 1em;
}
</style>
</head>
<body>
<nav class="navbar fixed-top navbar-expand-lg navbar-light bg-light">
<div class="collapse navbar-collapse">
<ul class="navbar-nav">
<li class="nav-item"><a class="nav-link" href="#Summary">Summary</a></li>
<li class="nav-item"><a class="nav-link" href="#Anatomical">Anatomical</a></li>
<li class="nav-item dropdown">
<a class="nav-link dropdown-toggle" id="navbarFunctional" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false" href="#">Functional</a>
<div class="dropdown-menu" aria-labelledby="navbarFunctional">
<a class="dropdown-item" href="#datatype-figures_desc-summary_session-002_suffix-bold_task-bars">Reports for: session <span class="bids-entity">002</span>, task <span class="bids-entity">bars</span>.</a>
<a class="dropdown-item" href="#datatype-figures_desc-summary_session-002_suffix-bold_task-rings">Reports for: session <span class="bids-entity">002</span>, task <span class="bids-entity">rings</span>.</a>
<a class="dropdown-item" href="#datatype-figures_desc-summary_session-002_suffix-bold_task-wedges">Reports for: session <span class="bids-entity">002</span>, task <span class="bids-entity">wedges</span>.</a>
</div>
</li>
<li class="nav-item"><a class="nav-link" href="#About">About</a></li>
<li class="nav-item"><a class="nav-link" href="#boilerplate">Methods</a></li>
<li class="nav-item"><a class="nav-link" href="#errors">Errors</a></li>
</ul>
</div>
</nav>
<noscript>
<h1 class="text-danger"> The navigation menu uses Javascript. Without it this report might not work as expected </h1>
</noscript>
<div id="Summary">
<h1 class="sub-report-title">Summary</h1>
<div id="datatype-figures_desc-summary_suffix-T1w">
<ul class="elem-desc">
<li>Subject ID: 03</li>
<li>Structural images: 1 T1-weighted </li>
<li>Functional series: 3</li>
<ul class="elem-desc">
<li>Task: bars (1 run)</li>
<li>Task: rings (1 run)</li>
<li>Task: wedges (1 run)</li>
</ul>
<li>Standard output spaces: MNI152NLin2009cAsym, fsaverage, MNI152NLin6Asym</li>
<li>Non-standard output spaces: T1w</li>
<li>FreeSurfer reconstruction: Pre-existing directory</li>
</ul>
</div>
</div>
<div id="Anatomical">
<h1 class="sub-report-title">Anatomical</h1>
<div id="datatype-figures_desc-conform_extension-['.html']_suffix-T1w">
<h4 class="elem-title">A previously computed T1w template was provided.</h4>
</div>
<div id="datatype-figures_suffix-dseg">
<h3 class="run-title">Brain mask and brain tissue segmentation of the T1w</h3><p class="elem-caption">This panel shows the template T1-weighted image (if several T1w images were found), with contours delineating the detected brain mask and brain tissue segmentations.</p> <img class="svg-reportlet" src="./sub-03/figures/sub-03_desc-preproc_dseg.svg" style="width: 100%" />
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_desc-preproc_dseg.svg" target="_blank">sub-03/figures/sub-03_desc-preproc_dseg.svg</a>
</div>
</div>
<div id="datatype-figures_regex_search-True_space-.*_suffix-T1w">
<h3 class="run-title">Spatial normalization of the anatomical T1w reference</h3><p class="elem-desc">Results of nonlinear alignment of the T1w reference one or more template space(s). Hover on the panels with the mouse pointer to transition between both spaces.</p><p class="elem-caption">Spatial normalization of the T1w image to the <code>MNI152NLin6Asym</code> template.</p> <object class="svg-reportlet" type="image/svg+xml" data="./sub-03/figures/sub-03_space-MNI152NLin6Asym_desc-preproc_T1w.svg">
Problem loading figure sub-03/figures/sub-03_space-MNI152NLin6Asym_desc-preproc_T1w.svg. If the link below works, please try reloading the report in your browser.</object>
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_space-MNI152NLin6Asym_desc-preproc_T1w.svg" target="_blank">sub-03/figures/sub-03_space-MNI152NLin6Asym_desc-preproc_T1w.svg</a>
</div>
<p class="elem-caption">Spatial normalization of the T1w image to the <code>MNI152NLin2009cAsym</code> template.</p> <object class="svg-reportlet" type="image/svg+xml" data="./sub-03/figures/sub-03_space-MNI152NLin2009cAsym_desc-preproc_T1w.svg">
Problem loading figure sub-03/figures/sub-03_space-MNI152NLin2009cAsym_desc-preproc_T1w.svg. If the link below works, please try reloading the report in your browser.</object>
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_space-MNI152NLin2009cAsym_desc-preproc_T1w.svg" target="_blank">sub-03/figures/sub-03_space-MNI152NLin2009cAsym_desc-preproc_T1w.svg</a>
</div>
</div>
<div id="datatype-figures_desc-reconall_suffix-T1w">
<h3 class="run-title">Surface reconstruction</h3><p class="elem-caption">Surfaces (white and pial) reconstructed with FreeSurfer (<code>recon-all</code>) overlaid on the participant's T1w template.</p> <img class="svg-reportlet" src="./sub-03/figures/sub-03_desc-reconall_T1w.svg" style="width: 100%" />
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_desc-reconall_T1w.svg" target="_blank">sub-03/figures/sub-03_desc-reconall_T1w.svg</a>
</div>
</div>
</div>
<div id="Functional">
<h1 class="sub-report-title">Functional</h1>
<div id="datatype-figures_desc-summary_session-002_suffix-bold_task-bars">
<h2 class="sub-report-group">Reports for: session <span class="bids-entity">002</span>, task <span class="bids-entity">bars</span>.</h2> <details open>
<summary>Summary</summary>
<ul class="elem-desc">
<li>Repetition time (TR): 1.49s</li>
<li>Phase-encoding (PE) direction: Anterior-Posterior</li>
<li>Single-echo EPI sequence.</li>
<li>Slice timing correction: Not applied</li>
<li>Susceptibility distortion correction: PEB/PEPOLAR (phase-encoding based / PE-POLARity)</li>
<li>Registration: FreeSurfer <code>bbregister</code> (boundary-based registration, BBR) - 6 dof</li>
<li>Non-steady-state volumes: 0</li>
</ul>
</details>
<details>
<summary>Confounds collected</summary><br />
<p>global_signal, global_signal_derivative1, global_signal_derivative1_power2, global_signal_power2, csf, csf_derivative1, csf_derivative1_power2, csf_power2, white_matter, white_matter_derivative1, white_matter_derivative1_power2, white_matter_power2, csf_wm, tcompcor, std_dvars, dvars, framewise_displacement, rmsd, t_comp_cor_00, t_comp_cor_01, t_comp_cor_02, t_comp_cor_03, t_comp_cor_04, t_comp_cor_05, a_comp_cor_00, a_comp_cor_01, a_comp_cor_02, a_comp_cor_03, a_comp_cor_04, a_comp_cor_05, a_comp_cor_06, a_comp_cor_07, a_comp_cor_08, a_comp_cor_09, a_comp_cor_10, a_comp_cor_11, a_comp_cor_12, a_comp_cor_13, a_comp_cor_14, a_comp_cor_15, a_comp_cor_16, a_comp_cor_17, a_comp_cor_18, a_comp_cor_19, a_comp_cor_20, a_comp_cor_21, a_comp_cor_22, a_comp_cor_23, a_comp_cor_24, a_comp_cor_25, a_comp_cor_26, a_comp_cor_27, a_comp_cor_28, a_comp_cor_29, a_comp_cor_30, a_comp_cor_31, a_comp_cor_32, a_comp_cor_33, a_comp_cor_34, a_comp_cor_35, a_comp_cor_36, a_comp_cor_37, a_comp_cor_38, a_comp_cor_39, a_comp_cor_40, a_comp_cor_41, a_comp_cor_42, a_comp_cor_43, a_comp_cor_44, a_comp_cor_45, a_comp_cor_46, a_comp_cor_47, a_comp_cor_48, a_comp_cor_49, a_comp_cor_50, a_comp_cor_51, a_comp_cor_52, a_comp_cor_53, a_comp_cor_54, a_comp_cor_55, a_comp_cor_56, a_comp_cor_57, a_comp_cor_58, a_comp_cor_59, a_comp_cor_60, a_comp_cor_61, a_comp_cor_62, a_comp_cor_63, a_comp_cor_64, a_comp_cor_65, a_comp_cor_66, a_comp_cor_67, a_comp_cor_68, a_comp_cor_69, a_comp_cor_70, a_comp_cor_71, a_comp_cor_72, a_comp_cor_73, a_comp_cor_74, a_comp_cor_75, a_comp_cor_76, a_comp_cor_77, a_comp_cor_78, a_comp_cor_79, a_comp_cor_80, a_comp_cor_81, a_comp_cor_82, a_comp_cor_83, a_comp_cor_84, a_comp_cor_85, a_comp_cor_86, a_comp_cor_87, a_comp_cor_88, a_comp_cor_89, a_comp_cor_90, a_comp_cor_91, a_comp_cor_92, a_comp_cor_93, a_comp_cor_94, a_comp_cor_95, a_comp_cor_96, a_comp_cor_97, a_comp_cor_98, a_comp_cor_99, a_comp_cor_100, a_comp_cor_101, a_comp_cor_102, a_comp_cor_103, a_comp_cor_104, a_comp_cor_105, a_comp_cor_106, a_comp_cor_107, a_comp_cor_108, a_comp_cor_109, a_comp_cor_110, a_comp_cor_111, a_comp_cor_112, a_comp_cor_113, a_comp_cor_114, a_comp_cor_115, a_comp_cor_116, a_comp_cor_117, a_comp_cor_118, a_comp_cor_119, a_comp_cor_120, a_comp_cor_121, a_comp_cor_122, a_comp_cor_123, a_comp_cor_124, a_comp_cor_125, a_comp_cor_126, a_comp_cor_127, a_comp_cor_128, a_comp_cor_129, a_comp_cor_130, a_comp_cor_131, a_comp_cor_132, a_comp_cor_133, a_comp_cor_134, a_comp_cor_135, a_comp_cor_136, a_comp_cor_137, a_comp_cor_138, a_comp_cor_139, a_comp_cor_140, a_comp_cor_141, a_comp_cor_142, a_comp_cor_143, a_comp_cor_144, a_comp_cor_145, a_comp_cor_146, a_comp_cor_147, a_comp_cor_148, a_comp_cor_149, a_comp_cor_150, a_comp_cor_151, a_comp_cor_152, a_comp_cor_153, a_comp_cor_154, a_comp_cor_155, a_comp_cor_156, a_comp_cor_157, a_comp_cor_158, a_comp_cor_159, a_comp_cor_160, a_comp_cor_161, a_comp_cor_162, a_comp_cor_163, a_comp_cor_164, a_comp_cor_165, a_comp_cor_166, a_comp_cor_167, a_comp_cor_168, a_comp_cor_169, a_comp_cor_170, a_comp_cor_171, a_comp_cor_172, a_comp_cor_173, a_comp_cor_174, a_comp_cor_175, a_comp_cor_176, a_comp_cor_177, a_comp_cor_178, a_comp_cor_179, a_comp_cor_180, a_comp_cor_181, a_comp_cor_182, a_comp_cor_183, a_comp_cor_184, a_comp_cor_185, a_comp_cor_186, a_comp_cor_187, a_comp_cor_188, a_comp_cor_189, a_comp_cor_190, a_comp_cor_191, a_comp_cor_192, a_comp_cor_193, a_comp_cor_194, a_comp_cor_195, a_comp_cor_196, a_comp_cor_197, a_comp_cor_198, a_comp_cor_199, a_comp_cor_200, a_comp_cor_201, a_comp_cor_202, cosine00, cosine01, cosine02, trans_x, trans_x_derivative1, trans_x_power2, trans_x_derivative1_power2, trans_y, trans_y_derivative1, trans_y_power2, trans_y_derivative1_power2, trans_z, trans_z_derivative1, trans_z_power2, trans_z_derivative1_power2, rot_x, rot_x_derivative1, rot_x_power2, rot_x_derivative1_power2, rot_y, rot_y_derivative1, rot_y_power2, rot_y_derivative1_power2, rot_z, rot_z_derivative1, rot_z_derivative1_power2, rot_z_power2.</p>
</details>
</div>
<div id="datatype-figures_desc-sdc_session-002_suffix-bold_task-bars">
<h3 class="run-title">Susceptibility distortion correction</h3><p class="elem-caption">Results of performing susceptibility distortion correction (SDC) on the EPI</p> <object class="svg-reportlet" type="image/svg+xml" data="./sub-03/figures/sub-03_ses-002_task-bars_desc-sdc_part-mag_bold.svg">
Problem loading figure sub-03/figures/sub-03_ses-002_task-bars_desc-sdc_part-mag_bold.svg. If the link below works, please try reloading the report in your browser.</object>
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-bars_desc-sdc_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-bars_desc-sdc_part-mag_bold.svg</a>
</div>
</div>
<div id="datatype-figures_desc-bbregister_session-002_suffix-bold_task-bars">
<h3 class="run-title">Alignment of functional and anatomical MRI data (surface driven)</h3><p class="elem-caption"><code>bbregister</code> was used to generate transformations from EPI-space to T1w-space. Note that Nearest Neighbor interpolation is used in the reportlets in order to highlight potential spin-history and other artifacts, whereas final images are resampled using Lanczos interpolation.</p> <object class="svg-reportlet" type="image/svg+xml" data="./sub-03/figures/sub-03_ses-002_task-bars_desc-bbregister_part-mag_bold.svg">
Problem loading figure sub-03/figures/sub-03_ses-002_task-bars_desc-bbregister_part-mag_bold.svg. If the link below works, please try reloading the report in your browser.</object>
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-bars_desc-bbregister_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-bars_desc-bbregister_part-mag_bold.svg</a>
</div>
</div>
<div id="datatype-figures_desc-rois_session-002_suffix-bold_task-bars">
<h3 class="run-title">Brain mask and (anatomical/temporal) CompCor ROIs</h3><p class="elem-caption">Brain mask calculated on the BOLD signal (red contour), along with the regions of interest (ROIs) used in <em>a/tCompCor</em> for extracting physiological and movement confounding components.<br /> The <em>anatomical CompCor</em> ROI (magenta contour) is a mask combining CSF and WM (white-matter), where voxels containing a minimal partial volume of GM have been removed.<br /> The <em>temporal CompCor</em> ROI (blue contour) contains the top 2% most variable voxels within the brain mask.</p> <img class="svg-reportlet" src="./sub-03/figures/sub-03_ses-002_task-bars_desc-rois_part-mag_bold.svg" style="width: 100%" />
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-bars_desc-rois_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-bars_desc-rois_part-mag_bold.svg</a>
</div>
</div>
<div id="datatype-figures_desc-compcorvar_session-002_suffix-bold_task-bars">
<h3 class="run-title">Variance explained by t/aCompCor components</h3><p class="elem-caption">The cumulative variance explained by the first k components of the <em>t/aCompCor</em> decomposition, plotted for all values of <em>k</em>. The number of components that must be included in the model in order to explain some fraction of variance in the decomposition mask can be used as a feature selection criterion for confound regression.</p> <img class="svg-reportlet" src="./sub-03/figures/sub-03_ses-002_task-bars_desc-compcorvar_part-mag_bold.svg" style="width: 100%" />
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-bars_desc-compcorvar_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-bars_desc-compcorvar_part-mag_bold.svg</a>
</div>
</div>
<div id="datatype-figures_desc-carpetplot_session-002_suffix-bold_task-bars">
<h3 class="run-title">BOLD Summary</h3><p class="elem-caption">Summary statistics are plotted, which may reveal trends or artifacts in the BOLD data. Global signals calculated within the whole-brain (GS), within the white-matter (WM) and within cerebro-spinal fluid (CSF) show the mean BOLD signal in their corresponding masks. DVARS and FD show the standardized DVARS and framewise-displacement measures for each time point.<br /> A carpet plot shows the time series for all voxels within the brain mask, or if <code>--cifti-output</code> was enabled, all grayordinates. Voxels are grouped into cortical (dark/light blue), and subcortical (orange) gray matter, cerebellum (green) and white matter and CSF (red), indicated by the color map on the left-hand side.</p> <img class="svg-reportlet" src="./sub-03/figures/sub-03_ses-002_task-bars_desc-carpetplot_part-mag_bold.svg" style="width: 100%" />
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-bars_desc-carpetplot_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-bars_desc-carpetplot_part-mag_bold.svg</a>
</div>
</div>
<div id="datatype-figures_desc-confoundcorr_session-002_suffix-bold_task-bars">
<h3 class="run-title">Correlations among nuisance regressors</h3><p class="elem-caption">Left: Heatmap summarizing the correlation structure among confound variables.
(Cosine bases and PCA-derived CompCor components are inherently orthogonal.)
Right: magnitude of the correlation between each confound time series and the
mean global signal. Strong correlations might be indicative of partial volume
effects and can inform decisions about feature orthogonalization prior to
confound regression.
</p> <img class="svg-reportlet" src="./sub-03/figures/sub-03_ses-002_task-bars_desc-confoundcorr_part-mag_bold.svg" style="width: 100%" />
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-bars_desc-confoundcorr_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-bars_desc-confoundcorr_part-mag_bold.svg</a>
</div>
</div>
<div id="datatype-figures_desc-summary_session-002_suffix-bold_task-rings">
<h2 class="sub-report-group">Reports for: session <span class="bids-entity">002</span>, task <span class="bids-entity">rings</span>.</h2> <details open>
<summary>Summary</summary>
<ul class="elem-desc">
<li>Repetition time (TR): 1.49s</li>
<li>Phase-encoding (PE) direction: Anterior-Posterior</li>
<li>Single-echo EPI sequence.</li>
<li>Slice timing correction: Not applied</li>
<li>Susceptibility distortion correction: PEB/PEPOLAR (phase-encoding based / PE-POLARity)</li>
<li>Registration: FreeSurfer <code>bbregister</code> (boundary-based registration, BBR) - 6 dof</li>
<li>Non-steady-state volumes: 0</li>
</ul>
</details>
<details>
<summary>Confounds collected</summary><br />
<p>global_signal, global_signal_derivative1, global_signal_derivative1_power2, global_signal_power2, csf, csf_derivative1, csf_derivative1_power2, csf_power2, white_matter, white_matter_derivative1, white_matter_derivative1_power2, white_matter_power2, csf_wm, tcompcor, std_dvars, dvars, framewise_displacement, rmsd, t_comp_cor_00, t_comp_cor_01, t_comp_cor_02, t_comp_cor_03, t_comp_cor_04, t_comp_cor_05, a_comp_cor_00, a_comp_cor_01, a_comp_cor_02, a_comp_cor_03, a_comp_cor_04, a_comp_cor_05, a_comp_cor_06, a_comp_cor_07, a_comp_cor_08, a_comp_cor_09, a_comp_cor_10, a_comp_cor_11, a_comp_cor_12, a_comp_cor_13, a_comp_cor_14, a_comp_cor_15, a_comp_cor_16, a_comp_cor_17, a_comp_cor_18, a_comp_cor_19, a_comp_cor_20, a_comp_cor_21, a_comp_cor_22, a_comp_cor_23, a_comp_cor_24, a_comp_cor_25, a_comp_cor_26, a_comp_cor_27, a_comp_cor_28, a_comp_cor_29, a_comp_cor_30, a_comp_cor_31, a_comp_cor_32, a_comp_cor_33, a_comp_cor_34, a_comp_cor_35, a_comp_cor_36, a_comp_cor_37, a_comp_cor_38, a_comp_cor_39, a_comp_cor_40, a_comp_cor_41, a_comp_cor_42, a_comp_cor_43, a_comp_cor_44, a_comp_cor_45, a_comp_cor_46, a_comp_cor_47, a_comp_cor_48, a_comp_cor_49, a_comp_cor_50, a_comp_cor_51, a_comp_cor_52, a_comp_cor_53, a_comp_cor_54, a_comp_cor_55, a_comp_cor_56, a_comp_cor_57, a_comp_cor_58, a_comp_cor_59, a_comp_cor_60, a_comp_cor_61, a_comp_cor_62, a_comp_cor_63, a_comp_cor_64, a_comp_cor_65, a_comp_cor_66, a_comp_cor_67, a_comp_cor_68, a_comp_cor_69, a_comp_cor_70, a_comp_cor_71, a_comp_cor_72, a_comp_cor_73, a_comp_cor_74, a_comp_cor_75, a_comp_cor_76, a_comp_cor_77, a_comp_cor_78, a_comp_cor_79, a_comp_cor_80, a_comp_cor_81, a_comp_cor_82, a_comp_cor_83, a_comp_cor_84, a_comp_cor_85, a_comp_cor_86, a_comp_cor_87, a_comp_cor_88, a_comp_cor_89, a_comp_cor_90, a_comp_cor_91, a_comp_cor_92, a_comp_cor_93, a_comp_cor_94, a_comp_cor_95, a_comp_cor_96, a_comp_cor_97, a_comp_cor_98, a_comp_cor_99, a_comp_cor_100, a_comp_cor_101, a_comp_cor_102, a_comp_cor_103, a_comp_cor_104, a_comp_cor_105, a_comp_cor_106, a_comp_cor_107, a_comp_cor_108, a_comp_cor_109, a_comp_cor_110, a_comp_cor_111, a_comp_cor_112, a_comp_cor_113, a_comp_cor_114, a_comp_cor_115, a_comp_cor_116, a_comp_cor_117, a_comp_cor_118, a_comp_cor_119, a_comp_cor_120, a_comp_cor_121, a_comp_cor_122, a_comp_cor_123, a_comp_cor_124, a_comp_cor_125, a_comp_cor_126, a_comp_cor_127, a_comp_cor_128, a_comp_cor_129, a_comp_cor_130, a_comp_cor_131, a_comp_cor_132, a_comp_cor_133, a_comp_cor_134, a_comp_cor_135, a_comp_cor_136, a_comp_cor_137, a_comp_cor_138, a_comp_cor_139, a_comp_cor_140, a_comp_cor_141, a_comp_cor_142, a_comp_cor_143, a_comp_cor_144, a_comp_cor_145, a_comp_cor_146, a_comp_cor_147, a_comp_cor_148, a_comp_cor_149, a_comp_cor_150, a_comp_cor_151, a_comp_cor_152, a_comp_cor_153, a_comp_cor_154, a_comp_cor_155, a_comp_cor_156, a_comp_cor_157, a_comp_cor_158, a_comp_cor_159, a_comp_cor_160, a_comp_cor_161, a_comp_cor_162, a_comp_cor_163, a_comp_cor_164, a_comp_cor_165, a_comp_cor_166, a_comp_cor_167, a_comp_cor_168, a_comp_cor_169, a_comp_cor_170, a_comp_cor_171, a_comp_cor_172, a_comp_cor_173, a_comp_cor_174, a_comp_cor_175, a_comp_cor_176, a_comp_cor_177, a_comp_cor_178, a_comp_cor_179, a_comp_cor_180, a_comp_cor_181, a_comp_cor_182, a_comp_cor_183, a_comp_cor_184, a_comp_cor_185, a_comp_cor_186, a_comp_cor_187, a_comp_cor_188, a_comp_cor_189, a_comp_cor_190, a_comp_cor_191, a_comp_cor_192, a_comp_cor_193, a_comp_cor_194, a_comp_cor_195, a_comp_cor_196, a_comp_cor_197, a_comp_cor_198, a_comp_cor_199, a_comp_cor_200, a_comp_cor_201, cosine00, cosine01, cosine02, trans_x, trans_x_derivative1, trans_x_power2, trans_x_derivative1_power2, trans_y, trans_y_derivative1, trans_y_power2, trans_y_derivative1_power2, trans_z, trans_z_derivative1, trans_z_power2, trans_z_derivative1_power2, rot_x, rot_x_derivative1, rot_x_power2, rot_x_derivative1_power2, rot_y, rot_y_derivative1, rot_y_power2, rot_y_derivative1_power2, rot_z, rot_z_derivative1, rot_z_derivative1_power2, rot_z_power2.</p>
</details>
</div>
<div id="datatype-figures_desc-sdc_session-002_suffix-bold_task-rings">
<h3 class="run-title">Susceptibility distortion correction</h3><p class="elem-caption">Results of performing susceptibility distortion correction (SDC) on the EPI</p> <object class="svg-reportlet" type="image/svg+xml" data="./sub-03/figures/sub-03_ses-002_task-rings_desc-sdc_part-mag_bold.svg">
Problem loading figure sub-03/figures/sub-03_ses-002_task-rings_desc-sdc_part-mag_bold.svg. If the link below works, please try reloading the report in your browser.</object>
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-rings_desc-sdc_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-rings_desc-sdc_part-mag_bold.svg</a>
</div>
</div>
<div id="datatype-figures_desc-bbregister_session-002_suffix-bold_task-rings">
<h3 class="run-title">Alignment of functional and anatomical MRI data (surface driven)</h3><p class="elem-caption"><code>bbregister</code> was used to generate transformations from EPI-space to T1w-space. Note that Nearest Neighbor interpolation is used in the reportlets in order to highlight potential spin-history and other artifacts, whereas final images are resampled using Lanczos interpolation.</p> <object class="svg-reportlet" type="image/svg+xml" data="./sub-03/figures/sub-03_ses-002_task-rings_desc-bbregister_part-mag_bold.svg">
Problem loading figure sub-03/figures/sub-03_ses-002_task-rings_desc-bbregister_part-mag_bold.svg. If the link below works, please try reloading the report in your browser.</object>
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-rings_desc-bbregister_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-rings_desc-bbregister_part-mag_bold.svg</a>
</div>
</div>
<div id="datatype-figures_desc-rois_session-002_suffix-bold_task-rings">
<h3 class="run-title">Brain mask and (anatomical/temporal) CompCor ROIs</h3><p class="elem-caption">Brain mask calculated on the BOLD signal (red contour), along with the regions of interest (ROIs) used in <em>a/tCompCor</em> for extracting physiological and movement confounding components.<br /> The <em>anatomical CompCor</em> ROI (magenta contour) is a mask combining CSF and WM (white-matter), where voxels containing a minimal partial volume of GM have been removed.<br /> The <em>temporal CompCor</em> ROI (blue contour) contains the top 2% most variable voxels within the brain mask.</p> <img class="svg-reportlet" src="./sub-03/figures/sub-03_ses-002_task-rings_desc-rois_part-mag_bold.svg" style="width: 100%" />
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-rings_desc-rois_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-rings_desc-rois_part-mag_bold.svg</a>
</div>
</div>
<div id="datatype-figures_desc-compcorvar_session-002_suffix-bold_task-rings">
<h3 class="run-title">Variance explained by t/aCompCor components</h3><p class="elem-caption">The cumulative variance explained by the first k components of the <em>t/aCompCor</em> decomposition, plotted for all values of <em>k</em>. The number of components that must be included in the model in order to explain some fraction of variance in the decomposition mask can be used as a feature selection criterion for confound regression.</p> <img class="svg-reportlet" src="./sub-03/figures/sub-03_ses-002_task-rings_desc-compcorvar_part-mag_bold.svg" style="width: 100%" />
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-rings_desc-compcorvar_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-rings_desc-compcorvar_part-mag_bold.svg</a>
</div>
</div>
<div id="datatype-figures_desc-carpetplot_session-002_suffix-bold_task-rings">
<h3 class="run-title">BOLD Summary</h3><p class="elem-caption">Summary statistics are plotted, which may reveal trends or artifacts in the BOLD data. Global signals calculated within the whole-brain (GS), within the white-matter (WM) and within cerebro-spinal fluid (CSF) show the mean BOLD signal in their corresponding masks. DVARS and FD show the standardized DVARS and framewise-displacement measures for each time point.<br /> A carpet plot shows the time series for all voxels within the brain mask, or if <code>--cifti-output</code> was enabled, all grayordinates. Voxels are grouped into cortical (dark/light blue), and subcortical (orange) gray matter, cerebellum (green) and white matter and CSF (red), indicated by the color map on the left-hand side.</p> <img class="svg-reportlet" src="./sub-03/figures/sub-03_ses-002_task-rings_desc-carpetplot_part-mag_bold.svg" style="width: 100%" />
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-rings_desc-carpetplot_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-rings_desc-carpetplot_part-mag_bold.svg</a>
</div>
</div>
<div id="datatype-figures_desc-confoundcorr_session-002_suffix-bold_task-rings">
<h3 class="run-title">Correlations among nuisance regressors</h3><p class="elem-caption">Left: Heatmap summarizing the correlation structure among confound variables.
(Cosine bases and PCA-derived CompCor components are inherently orthogonal.)
Right: magnitude of the correlation between each confound time series and the
mean global signal. Strong correlations might be indicative of partial volume
effects and can inform decisions about feature orthogonalization prior to
confound regression.
</p> <img class="svg-reportlet" src="./sub-03/figures/sub-03_ses-002_task-rings_desc-confoundcorr_part-mag_bold.svg" style="width: 100%" />
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-rings_desc-confoundcorr_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-rings_desc-confoundcorr_part-mag_bold.svg</a>
</div>
</div>
<div id="datatype-figures_desc-summary_session-002_suffix-bold_task-wedges">
<h2 class="sub-report-group">Reports for: session <span class="bids-entity">002</span>, task <span class="bids-entity">wedges</span>.</h2> <details open>
<summary>Summary</summary>
<ul class="elem-desc">
<li>Repetition time (TR): 1.49s</li>
<li>Phase-encoding (PE) direction: Anterior-Posterior</li>
<li>Single-echo EPI sequence.</li>
<li>Slice timing correction: Not applied</li>
<li>Susceptibility distortion correction: PEB/PEPOLAR (phase-encoding based / PE-POLARity)</li>
<li>Registration: FreeSurfer <code>bbregister</code> (boundary-based registration, BBR) - 6 dof</li>
<li>Non-steady-state volumes: 0</li>
</ul>
</details>
<details>
<summary>Confounds collected</summary><br />
<p>global_signal, global_signal_derivative1, global_signal_derivative1_power2, global_signal_power2, csf, csf_derivative1, csf_derivative1_power2, csf_power2, white_matter, white_matter_derivative1, white_matter_derivative1_power2, white_matter_power2, csf_wm, tcompcor, std_dvars, dvars, framewise_displacement, rmsd, t_comp_cor_00, t_comp_cor_01, t_comp_cor_02, t_comp_cor_03, t_comp_cor_04, t_comp_cor_05, a_comp_cor_00, a_comp_cor_01, a_comp_cor_02, a_comp_cor_03, a_comp_cor_04, a_comp_cor_05, a_comp_cor_06, a_comp_cor_07, a_comp_cor_08, a_comp_cor_09, a_comp_cor_10, a_comp_cor_11, a_comp_cor_12, a_comp_cor_13, a_comp_cor_14, a_comp_cor_15, a_comp_cor_16, a_comp_cor_17, a_comp_cor_18, a_comp_cor_19, a_comp_cor_20, a_comp_cor_21, a_comp_cor_22, a_comp_cor_23, a_comp_cor_24, a_comp_cor_25, a_comp_cor_26, a_comp_cor_27, a_comp_cor_28, a_comp_cor_29, a_comp_cor_30, a_comp_cor_31, a_comp_cor_32, a_comp_cor_33, a_comp_cor_34, a_comp_cor_35, a_comp_cor_36, a_comp_cor_37, a_comp_cor_38, a_comp_cor_39, a_comp_cor_40, a_comp_cor_41, a_comp_cor_42, a_comp_cor_43, a_comp_cor_44, a_comp_cor_45, a_comp_cor_46, a_comp_cor_47, a_comp_cor_48, a_comp_cor_49, a_comp_cor_50, a_comp_cor_51, a_comp_cor_52, a_comp_cor_53, a_comp_cor_54, a_comp_cor_55, a_comp_cor_56, a_comp_cor_57, a_comp_cor_58, a_comp_cor_59, a_comp_cor_60, a_comp_cor_61, a_comp_cor_62, a_comp_cor_63, a_comp_cor_64, a_comp_cor_65, a_comp_cor_66, a_comp_cor_67, a_comp_cor_68, a_comp_cor_69, a_comp_cor_70, a_comp_cor_71, a_comp_cor_72, a_comp_cor_73, a_comp_cor_74, a_comp_cor_75, a_comp_cor_76, a_comp_cor_77, a_comp_cor_78, a_comp_cor_79, a_comp_cor_80, a_comp_cor_81, a_comp_cor_82, a_comp_cor_83, a_comp_cor_84, a_comp_cor_85, a_comp_cor_86, a_comp_cor_87, a_comp_cor_88, a_comp_cor_89, a_comp_cor_90, a_comp_cor_91, a_comp_cor_92, a_comp_cor_93, a_comp_cor_94, a_comp_cor_95, a_comp_cor_96, a_comp_cor_97, a_comp_cor_98, a_comp_cor_99, a_comp_cor_100, a_comp_cor_101, a_comp_cor_102, a_comp_cor_103, a_comp_cor_104, a_comp_cor_105, a_comp_cor_106, a_comp_cor_107, a_comp_cor_108, a_comp_cor_109, a_comp_cor_110, a_comp_cor_111, a_comp_cor_112, a_comp_cor_113, a_comp_cor_114, a_comp_cor_115, a_comp_cor_116, a_comp_cor_117, a_comp_cor_118, a_comp_cor_119, a_comp_cor_120, a_comp_cor_121, a_comp_cor_122, a_comp_cor_123, a_comp_cor_124, a_comp_cor_125, a_comp_cor_126, a_comp_cor_127, a_comp_cor_128, a_comp_cor_129, a_comp_cor_130, a_comp_cor_131, a_comp_cor_132, a_comp_cor_133, a_comp_cor_134, a_comp_cor_135, a_comp_cor_136, a_comp_cor_137, a_comp_cor_138, a_comp_cor_139, a_comp_cor_140, a_comp_cor_141, a_comp_cor_142, a_comp_cor_143, a_comp_cor_144, a_comp_cor_145, a_comp_cor_146, a_comp_cor_147, a_comp_cor_148, a_comp_cor_149, a_comp_cor_150, a_comp_cor_151, a_comp_cor_152, a_comp_cor_153, a_comp_cor_154, a_comp_cor_155, a_comp_cor_156, a_comp_cor_157, a_comp_cor_158, a_comp_cor_159, a_comp_cor_160, a_comp_cor_161, a_comp_cor_162, a_comp_cor_163, a_comp_cor_164, a_comp_cor_165, a_comp_cor_166, a_comp_cor_167, a_comp_cor_168, a_comp_cor_169, a_comp_cor_170, a_comp_cor_171, a_comp_cor_172, a_comp_cor_173, a_comp_cor_174, a_comp_cor_175, a_comp_cor_176, a_comp_cor_177, a_comp_cor_178, a_comp_cor_179, a_comp_cor_180, a_comp_cor_181, a_comp_cor_182, a_comp_cor_183, a_comp_cor_184, a_comp_cor_185, a_comp_cor_186, a_comp_cor_187, a_comp_cor_188, a_comp_cor_189, a_comp_cor_190, a_comp_cor_191, a_comp_cor_192, a_comp_cor_193, a_comp_cor_194, a_comp_cor_195, a_comp_cor_196, a_comp_cor_197, a_comp_cor_198, a_comp_cor_199, a_comp_cor_200, a_comp_cor_201, cosine00, cosine01, cosine02, trans_x, trans_x_derivative1, trans_x_power2, trans_x_derivative1_power2, trans_y, trans_y_derivative1, trans_y_power2, trans_y_derivative1_power2, trans_z, trans_z_derivative1, trans_z_power2, trans_z_derivative1_power2, rot_x, rot_x_derivative1, rot_x_power2, rot_x_derivative1_power2, rot_y, rot_y_derivative1, rot_y_power2, rot_y_derivative1_power2, rot_z, rot_z_derivative1, rot_z_derivative1_power2, rot_z_power2.</p>
</details>
</div>
<div id="datatype-figures_desc-sdc_session-002_suffix-bold_task-wedges">
<h3 class="run-title">Susceptibility distortion correction</h3><p class="elem-caption">Results of performing susceptibility distortion correction (SDC) on the EPI</p> <object class="svg-reportlet" type="image/svg+xml" data="./sub-03/figures/sub-03_ses-002_task-wedges_desc-sdc_part-mag_bold.svg">
Problem loading figure sub-03/figures/sub-03_ses-002_task-wedges_desc-sdc_part-mag_bold.svg. If the link below works, please try reloading the report in your browser.</object>
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-wedges_desc-sdc_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-wedges_desc-sdc_part-mag_bold.svg</a>
</div>
</div>
<div id="datatype-figures_desc-bbregister_session-002_suffix-bold_task-wedges">
<h3 class="run-title">Alignment of functional and anatomical MRI data (surface driven)</h3><p class="elem-caption"><code>bbregister</code> was used to generate transformations from EPI-space to T1w-space. Note that Nearest Neighbor interpolation is used in the reportlets in order to highlight potential spin-history and other artifacts, whereas final images are resampled using Lanczos interpolation.</p> <object class="svg-reportlet" type="image/svg+xml" data="./sub-03/figures/sub-03_ses-002_task-wedges_desc-bbregister_part-mag_bold.svg">
Problem loading figure sub-03/figures/sub-03_ses-002_task-wedges_desc-bbregister_part-mag_bold.svg. If the link below works, please try reloading the report in your browser.</object>
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-wedges_desc-bbregister_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-wedges_desc-bbregister_part-mag_bold.svg</a>
</div>
</div>
<div id="datatype-figures_desc-rois_session-002_suffix-bold_task-wedges">
<h3 class="run-title">Brain mask and (anatomical/temporal) CompCor ROIs</h3><p class="elem-caption">Brain mask calculated on the BOLD signal (red contour), along with the regions of interest (ROIs) used in <em>a/tCompCor</em> for extracting physiological and movement confounding components.<br /> The <em>anatomical CompCor</em> ROI (magenta contour) is a mask combining CSF and WM (white-matter), where voxels containing a minimal partial volume of GM have been removed.<br /> The <em>temporal CompCor</em> ROI (blue contour) contains the top 2% most variable voxels within the brain mask.</p> <img class="svg-reportlet" src="./sub-03/figures/sub-03_ses-002_task-wedges_desc-rois_part-mag_bold.svg" style="width: 100%" />
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-wedges_desc-rois_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-wedges_desc-rois_part-mag_bold.svg</a>
</div>
</div>
<div id="datatype-figures_desc-compcorvar_session-002_suffix-bold_task-wedges">
<h3 class="run-title">Variance explained by t/aCompCor components</h3><p class="elem-caption">The cumulative variance explained by the first k components of the <em>t/aCompCor</em> decomposition, plotted for all values of <em>k</em>. The number of components that must be included in the model in order to explain some fraction of variance in the decomposition mask can be used as a feature selection criterion for confound regression.</p> <img class="svg-reportlet" src="./sub-03/figures/sub-03_ses-002_task-wedges_desc-compcorvar_part-mag_bold.svg" style="width: 100%" />
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-wedges_desc-compcorvar_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-wedges_desc-compcorvar_part-mag_bold.svg</a>
</div>
</div>
<div id="datatype-figures_desc-carpetplot_session-002_suffix-bold_task-wedges">
<h3 class="run-title">BOLD Summary</h3><p class="elem-caption">Summary statistics are plotted, which may reveal trends or artifacts in the BOLD data. Global signals calculated within the whole-brain (GS), within the white-matter (WM) and within cerebro-spinal fluid (CSF) show the mean BOLD signal in their corresponding masks. DVARS and FD show the standardized DVARS and framewise-displacement measures for each time point.<br /> A carpet plot shows the time series for all voxels within the brain mask, or if <code>--cifti-output</code> was enabled, all grayordinates. Voxels are grouped into cortical (dark/light blue), and subcortical (orange) gray matter, cerebellum (green) and white matter and CSF (red), indicated by the color map on the left-hand side.</p> <img class="svg-reportlet" src="./sub-03/figures/sub-03_ses-002_task-wedges_desc-carpetplot_part-mag_bold.svg" style="width: 100%" />
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-wedges_desc-carpetplot_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-wedges_desc-carpetplot_part-mag_bold.svg</a>
</div>
</div>
<div id="datatype-figures_desc-confoundcorr_session-002_suffix-bold_task-wedges">
<h3 class="run-title">Correlations among nuisance regressors</h3><p class="elem-caption">Left: Heatmap summarizing the correlation structure among confound variables.
(Cosine bases and PCA-derived CompCor components are inherently orthogonal.)
Right: magnitude of the correlation between each confound time series and the
mean global signal. Strong correlations might be indicative of partial volume
effects and can inform decisions about feature orthogonalization prior to
confound regression.
</p> <img class="svg-reportlet" src="./sub-03/figures/sub-03_ses-002_task-wedges_desc-confoundcorr_part-mag_bold.svg" style="width: 100%" />
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-03/figures/sub-03_ses-002_task-wedges_desc-confoundcorr_part-mag_bold.svg" target="_blank">sub-03/figures/sub-03_ses-002_task-wedges_desc-confoundcorr_part-mag_bold.svg</a>
</div>
</div>
</div>
<div id="About">
<h1 class="sub-report-title">About</h1>
<div id="datatype-figures_desc-about_suffix-T1w">
<ul>
<li>fMRIPrep version: 20.2.3</li>
<li>fMRIPrep command: <code>/usr/local/miniconda/bin/fmriprep -w ./workdir --participant-label 03 --anat-derivatives ./sourcedata/smriprep --fs-subjects-dir ./sourcedata/smriprep/sourcedata/freesurfer --bids-filter-file code/fmriprep_study-retinotopy_sub-03_ses-002_bids_filters.json --output-layout bids --ignore slicetiming --use-syn-sdc --output-spaces MNI152NLin2009cAsym T1w:res-iso2mm --cifti-output 91k --notrack --write-graph --skip_bids_validation --omp-nthreads 8 --nprocs 16 --mem_mb 65536 --fs-license-file code/freesurfer.license --resource-monitor sourcedata/retinotopy ./ participant</code></li>
<li>Date preprocessed: 2021-10-05 01:46:53 +0000</li>
</ul>
</div>
</div>
</div>
<div id="boilerplate">
<h1 class="sub-report-title">Methods</h1>
<p>We kindly ask to report results preprocessed with this tool using the following
boilerplate.</p>
<ul class="nav nav-tabs" id="myTab" role="tablist">
<li class="nav-item">
<a class="nav-link active" id="HTML-tab" data-toggle="tab" href="#HTML" role="tab" aria-controls="HTML" aria-selected="true">HTML</a>
</li>
<li class="nav-item">
<a class="nav-link " id="Markdown-tab" data-toggle="tab" href="#Markdown" role="tab" aria-controls="Markdown" aria-selected="false">Markdown</a>
</li>
<li class="nav-item">
<a class="nav-link " id="LaTeX-tab" data-toggle="tab" href="#LaTeX" role="tab" aria-controls="LaTeX" aria-selected="false">LaTeX</a>
</li>
</ul>
<div class="tab-content" id="myTabContent">
<div class="tab-pane fade active show" id="HTML" role="tabpanel" aria-labelledby="HTML-tab"><div class="boiler-html"><p>Results included in this manuscript come from preprocessing performed using <em>fMRIPrep</em> 20.2.3 (<span class="citation" data-cites="fmriprep1">Esteban, Markiewicz, et al. (2018)</span>; <span class="citation" data-cites="fmriprep2">Esteban, Blair, et al. (2018)</span>; RRID:SCR_016216), which is based on <em>Nipype</em> 1.6.1 (<span class="citation" data-cites="nipype1">Gorgolewski et al. (2011)</span>; <span class="citation" data-cites="nipype2">Gorgolewski et al. (2018)</span>; RRID:SCR_002502).</p>
<dl>
<dt>Anatomical data preprocessing</dt>
<dd><p>A total of 0 T1-weighted (T1w) images were found within the input BIDS dataset. Anatomical preprocessing was reused from previously existing derivative objects.</p>
</dd>
<dt>Functional data preprocessing</dt>
<dd><p>For each of the 3 BOLD runs found per subject (across all tasks and sessions), the following preprocessing was performed. First, a reference volume and its skull-stripped version were generated by aligning and averaging 1 single-band references (SBRefs). A B0-nonuniformity map (or <em>fieldmap</em>) was estimated based on two (or more) echo-planar imaging (EPI) references with opposing phase-encoding directions, with <code>3dQwarp</code> <span class="citation" data-cites="afni">Cox and Hyde (1997)</span> (AFNI 20160207). Based on the estimated susceptibility distortion, a corrected EPI (echo-planar imaging) reference was calculated for a more accurate co-registration with the anatomical reference. The BOLD reference was then co-registered to the T1w reference using <code>bbregister</code> (FreeSurfer) which implements boundary-based registration <span class="citation" data-cites="bbr">(Greve and Fischl 2009)</span>. Co-registration was configured with six degrees of freedom. Head-motion parameters with respect to the BOLD reference (transformation matrices, and six corresponding rotation and translation parameters) are estimated before any spatiotemporal filtering using <code>mcflirt</code> <span class="citation" data-cites="mcflirt">(FSL 5.0.9, Jenkinson et al. 2002)</span>. First, a reference volume and its skull-stripped version were generated using a custom methodology of <em>fMRIPrep</em>. The BOLD time-series were resampled onto the following surfaces (FreeSurfer reconstruction nomenclature): <em>fsaverage</em>. The BOLD time-series (including slice-timing correction when applied) were resampled onto their original, native space by applying a single, composite transform to correct for head-motion and susceptibility distortions. These resampled BOLD time-series will be referred to as <em>preprocessed BOLD in original space</em>, or just <em>preprocessed BOLD</em>. The BOLD time-series were resampled into standard space, generating a <em>preprocessed BOLD run in MNI152NLin2009cAsym space</em>. First, a reference volume and its skull-stripped version were generated using a custom methodology of <em>fMRIPrep</em>. <em>Grayordinates</em> files <span class="citation" data-cites="hcppipelines">(Glasser et al. 2013)</span> containing 91k samples were also generated using the highest-resolution <code>fsaverage</code> as intermediate standardized surface space. Several confounding time-series were calculated based on the <em>preprocessed BOLD</em>: framewise displacement (FD), DVARS and three region-wise global signals. FD was computed using two formulations following Power (absolute sum of relative motions, <span class="citation" data-cites="power_fd_dvars">Power et al. (2014)</span>) and Jenkinson (relative root mean square displacement between affines, <span class="citation" data-cites="mcflirt">Jenkinson et al. (2002)</span>). FD and DVARS are calculated for each functional run, both using their implementations in <em>Nipype</em> <span class="citation" data-cites="power_fd_dvars">(following the definitions by Power et al. 2014)</span>. The three global signals are extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors were extracted to allow for component-based noise correction <span class="citation" data-cites="compcor">(<em>CompCor</em>, Behzadi et al. 2007)</span>. Principal components are estimated after high-pass filtering the <em>preprocessed BOLD</em> time-series (using a discrete cosine filter with 128s cut-off) for the two <em>CompCor</em> variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor components are then calculated from the top 2% variable voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated in anatomical space. The implementation differs from that of Behzadi et al. in that instead of eroding the masks by 2 pixels on BOLD space, the aCompCor masks are subtracted a mask of pixels that likely contain a volume fraction of GM. This mask is obtained by dilating a GM mask extracted from the FreeSurfer’s <em>aseg</em> segmentation, and it ensures components are not extracted from voxels containing a minimal fraction of GM. Finally, these masks are resampled into BOLD space and binarized by thresholding at 0.99 (as in the original implementation). Components are also calculated separately within the WM and CSF masks. For each CompCor decomposition, the <em>k</em> components with the largest singular values are retained, such that the retained components’ time series are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal). The remaining components are dropped from consideration. The head-motion estimates calculated in the correction step were also placed within the corresponding confounds file. The confound time series derived from head motion estimates and global signals were expanded with the inclusion of temporal derivatives and quadratic terms for each <span class="citation" data-cites="confounds_satterthwaite_2013">(Satterthwaite et al. 2013)</span>. Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated as motion outliers. All resamplings can be performed with <em>a single interpolation step</em> by composing all the pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion correction when available, and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were performed using <code>antsApplyTransforms</code> (ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other kernels <span class="citation" data-cites="lanczos">(Lanczos 1964)</span>. Non-gridded (surface) resamplings were performed using <code>mri_vol2surf</code> (FreeSurfer).</p>
</dd>
</dl>
<p>Many internal operations of <em>fMRIPrep</em> use <em>Nilearn</em> 0.6.2 <span class="citation" data-cites="nilearn">(Abraham et al. 2014, RRID:SCR_001362)</span>, mostly within the functional processing workflow. For more details of the pipeline, see <a href="https://fmriprep.readthedocs.io/en/latest/workflows.html" title="FMRIPrep's documentation">the section corresponding to workflows in <em>fMRIPrep</em>’s documentation</a>.</p>
<h3 id="copyright-waiver">Copyright Waiver</h3>
<p>The above boilerplate text was automatically generated by fMRIPrep with the express intention that users should copy and paste this text into their manuscripts <em>unchanged</em>. It is released under the <a href="https://creativecommons.org/publicdomain/zero/1.0/">CC0</a> license.</p>
<h3 id="references" class="unnumbered">References</h3>
<div id="refs" class="references">
<div id="ref-nilearn">
<p>Abraham, Alexandre, Fabian Pedregosa, Michael Eickenberg, Philippe Gervais, Andreas Mueller, Jean Kossaifi, Alexandre Gramfort, Bertrand Thirion, and Gael Varoquaux. 2014. “Machine Learning for Neuroimaging with Scikit-Learn.” <em>Frontiers in Neuroinformatics</em> 8. <a href="https://doi.org/10.3389/fninf.2014.00014" class="uri">https://doi.org/10.3389/fninf.2014.00014</a>.</p>
</div>
<div id="ref-compcor">
<p>Behzadi, Yashar, Khaled Restom, Joy Liau, and Thomas T. Liu. 2007. “A Component Based Noise Correction Method (CompCor) for BOLD and Perfusion Based fMRI.” <em>NeuroImage</em> 37 (1): 90–101. <a href="https://doi.org/10.1016/j.neuroimage.2007.04.042" class="uri">https://doi.org/10.1016/j.neuroimage.2007.04.042</a>.</p>
</div>
<div id="ref-afni">
<p>Cox, Robert W., and James S. Hyde. 1997. “Software Tools for Analysis and Visualization of fMRI Data.” <em>NMR in Biomedicine</em> 10 (4-5): 171–78. <a href="https://doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L" class="uri">https://doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L</a>.</p>
</div>
<div id="ref-fmriprep2">
<p>Esteban, Oscar, Ross Blair, Christopher J. Markiewicz, Shoshana L. Berleant, Craig Moodie, Feilong Ma, Ayse Ilkay Isik, et al. 2018. “FMRIPrep.” <em>Software</em>. Zenodo. <a href="https://doi.org/10.5281/zenodo.852659" class="uri">https://doi.org/10.5281/zenodo.852659</a>.</p>
</div>
<div id="ref-fmriprep1">
<p>Esteban, Oscar, Christopher Markiewicz, Ross W Blair, Craig Moodie, Ayse Ilkay Isik, Asier Erramuzpe Aliaga, James Kent, et al. 2018. “fMRIPrep: A Robust Preprocessing Pipeline for Functional MRI.” <em>Nature Methods</em>. <a href="https://doi.org/10.1038/s41592-018-0235-4" class="uri">https://doi.org/10.1038/s41592-018-0235-4</a>.</p>
</div>
<div id="ref-hcppipelines">
<p>Glasser, Matthew F., Stamatios N. Sotiropoulos, J. Anthony Wilson, Timothy S. Coalson, Bruce Fischl, Jesper L. Andersson, Junqian Xu, et al. 2013. “The Minimal Preprocessing Pipelines for the Human Connectome Project.” <em>NeuroImage</em>, Mapping the connectome, 80: 105–24. <a href="https://doi.org/10.1016/j.neuroimage.2013.04.127" class="uri">https://doi.org/10.1016/j.neuroimage.2013.04.127</a>.</p>
</div>
<div id="ref-nipype1">
<p>Gorgolewski, K., C. D. Burns, C. Madison, D. Clark, Y. O. Halchenko, M. L. Waskom, and S. Ghosh. 2011. “Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python.” <em>Frontiers in Neuroinformatics</em> 5: 13. <a href="https://doi.org/10.3389/fninf.2011.00013" class="uri">https://doi.org/10.3389/fninf.2011.00013</a>.</p>
</div>
<div id="ref-nipype2">
<p>Gorgolewski, Krzysztof J., Oscar Esteban, Christopher J. Markiewicz, Erik Ziegler, David Gage Ellis, Michael Philipp Notter, Dorota Jarecka, et al. 2018. “Nipype.” <em>Software</em>. Zenodo. <a href="https://doi.org/10.5281/zenodo.596855" class="uri">https://doi.org/10.5281/zenodo.596855</a>.</p>
</div>
<div id="ref-bbr">
<p>Greve, Douglas N, and Bruce Fischl. 2009. “Accurate and Robust Brain Image Alignment Using Boundary-Based Registration.” <em>NeuroImage</em> 48 (1): 63–72. <a href="https://doi.org/10.1016/j.neuroimage.2009.06.060" class="uri">https://doi.org/10.1016/j.neuroimage.2009.06.060</a>.</p>
</div>
<div id="ref-mcflirt">
<p>Jenkinson, Mark, Peter Bannister, Michael Brady, and Stephen Smith. 2002. “Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images.” <em>NeuroImage</em> 17 (2): 825–41. <a href="https://doi.org/10.1006/nimg.2002.1132" class="uri">https://doi.org/10.1006/nimg.2002.1132</a>.</p>
</div>
<div id="ref-lanczos">
<p>Lanczos, C. 1964. “Evaluation of Noisy Data.” <em>Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis</em> 1 (1): 76–85. <a href="https://doi.org/10.1137/0701007" class="uri">https://doi.org/10.1137/0701007</a>.</p>
</div>
<div id="ref-power_fd_dvars">
<p>Power, Jonathan D., Anish Mitra, Timothy O. Laumann, Abraham Z. Snyder, Bradley L. Schlaggar, and Steven E. Petersen. 2014. “Methods to Detect, Characterize, and Remove Motion Artifact in Resting State fMRI.” <em>NeuroImage</em> 84 (Supplement C): 320–41. <a href="https://doi.org/10.1016/j.neuroimage.2013.08.048" class="uri">https://doi.org/10.1016/j.neuroimage.2013.08.048</a>.</p>
</div>
<div id="ref-confounds_satterthwaite_2013">
<p>Satterthwaite, Theodore D., Mark A. Elliott, Raphael T. Gerraty, Kosha Ruparel, James Loughead, Monica E. Calkins, Simon B. Eickhoff, et al. 2013. “An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data.” <em>NeuroImage</em> 64 (1): 240–56. <a href="https://doi.org/10.1016/j.neuroimage.2012.08.052" class="uri">https://doi.org/10.1016/j.neuroimage.2012.08.052</a>.</p>
</div>
</div></div></div>
<div class="tab-pane fade " id="Markdown" role="tabpanel" aria-labelledby="Markdown-tab"><pre>
Results included in this manuscript come from preprocessing
performed using *fMRIPrep* 20.2.3
(@fmriprep1; @fmriprep2; RRID:SCR_016216),
which is based on *Nipype* 1.6.1
(@nipype1; @nipype2; RRID:SCR_002502).
Anatomical data preprocessing
: A total of 0 T1-weighted (T1w) images were found within the input
BIDS dataset.
Anatomical preprocessing was reused from previously existing derivative objects.
Functional data preprocessing
: For each of the 3 BOLD runs found per subject (across all
tasks and sessions), the following preprocessing was performed.
First, a reference volume and its skull-stripped version were generated
by aligning and averaging
1 single-band references (SBRefs).
A B0-nonuniformity map (or *fieldmap*) was estimated based on two (or more)
echo-planar imaging (EPI) references with opposing phase-encoding
directions, with `3dQwarp` @afni (AFNI 20160207).
Based on the estimated susceptibility distortion, a corrected
EPI (echo-planar imaging) reference was calculated for a more
accurate co-registration with the anatomical reference.
The BOLD reference was then co-registered to the T1w reference using
`bbregister` (FreeSurfer) which implements boundary-based registration [@bbr].
Co-registration was configured with six degrees of freedom.
Head-motion parameters with respect to the BOLD reference
(transformation matrices, and six corresponding rotation and translation
parameters) are estimated before any spatiotemporal filtering using
`mcflirt` [FSL 5.0.9, @mcflirt].
First, a reference volume and its skull-stripped version were generated
using a custom
methodology of *fMRIPrep*.
The BOLD time-series were resampled onto the following surfaces
(FreeSurfer reconstruction nomenclature):
*fsaverage*.
The BOLD time-series (including slice-timing correction when applied)
were resampled onto their original, native space by applying
a single, composite transform to correct for head-motion and
susceptibility distortions.
These resampled BOLD time-series will be referred to as *preprocessed
BOLD in original space*, or just *preprocessed BOLD*.
The BOLD time-series were resampled into standard space,
generating a *preprocessed BOLD run in MNI152NLin2009cAsym space*.
First, a reference volume and its skull-stripped version were generated
using a custom
methodology of *fMRIPrep*.
*Grayordinates* files [@hcppipelines] containing 91k samples were also
generated using the highest-resolution ``fsaverage`` as intermediate standardized
surface space.
Several confounding time-series were calculated based on the
*preprocessed BOLD*: framewise displacement (FD), DVARS and
three region-wise global signals.
FD was computed using two formulations following Power (absolute sum of
relative motions, @power_fd_dvars) and Jenkinson (relative root mean square
displacement between affines, @mcflirt).
FD and DVARS are calculated for each functional run, both using their
implementations in *Nipype* [following the definitions by @power_fd_dvars].
The three global signals are extracted within the CSF, the WM, and
the whole-brain masks.
Additionally, a set of physiological regressors were extracted to
allow for component-based noise correction [*CompCor*, @compcor].
Principal components are estimated after high-pass filtering the
*preprocessed BOLD* time-series (using a discrete cosine filter with
128s cut-off) for the two *CompCor* variants: temporal (tCompCor)
and anatomical (aCompCor).
tCompCor components are then calculated from the top 2% variable
voxels within the brain mask.
For aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM)
are generated in anatomical space.
The implementation differs from that of Behzadi et al. in that instead
of eroding the masks by 2 pixels on BOLD space, the aCompCor masks are
subtracted a mask of pixels that likely contain a volume fraction of GM.
This mask is obtained by dilating a GM mask extracted from the FreeSurfer's *aseg* segmentation, and it ensures components are not extracted
from voxels containing a minimal fraction of GM.
Finally, these masks are resampled into BOLD space and binarized by
thresholding at 0.99 (as in the original implementation).
Components are also calculated separately within the WM and CSF masks.
For each CompCor decomposition, the *k* components with the largest singular
values are retained, such that the retained components' time series are
sufficient to explain 50 percent of variance across the nuisance mask (CSF,
WM, combined, or temporal). The remaining components are dropped from
consideration.
The head-motion estimates calculated in the correction step were also
placed within the corresponding confounds file.
The confound time series derived from head motion estimates and global
signals were expanded with the inclusion of temporal derivatives and
quadratic terms for each [@confounds_satterthwaite_2013].
Frames that exceeded a threshold of 0.5 mm FD or
1.5 standardised DVARS were annotated as motion outliers.
All resamplings can be performed with *a single interpolation
step* by composing all the pertinent transformations (i.e. head-motion
transform matrices, susceptibility distortion correction when available,
and co-registrations to anatomical and output spaces).
Gridded (volumetric) resamplings were performed using `antsApplyTransforms` (ANTs),
configured with Lanczos interpolation to minimize the smoothing
effects of other kernels [@lanczos].
Non-gridded (surface) resamplings were performed using `mri_vol2surf`
(FreeSurfer).
Many internal operations of *fMRIPrep* use
*Nilearn* 0.6.2 [@nilearn, RRID:SCR_001362],
mostly within the functional processing workflow.
For more details of the pipeline, see [the section corresponding
to workflows in *fMRIPrep*'s documentation](https://fmriprep.readthedocs.io/en/latest/workflows.html "FMRIPrep's documentation").
### Copyright Waiver
The above boilerplate text was automatically generated by fMRIPrep
with the express intention that users should copy and paste this
text into their manuscripts *unchanged*.
It is released under the [CC0](https://creativecommons.org/publicdomain/zero/1.0/) license.
### References
</pre>
</div>
<div class="tab-pane fade " id="LaTeX" role="tabpanel" aria-labelledby="LaTeX-tab"><pre>Results included in this manuscript come from preprocessing performed
using \emph{fMRIPrep} 20.2.3 (\citet{fmriprep1}; \citet{fmriprep2};
RRID:SCR\_016216), which is based on \emph{Nipype} 1.6.1
(\citet{nipype1}; \citet{nipype2}; RRID:SCR\_002502).
\begin{description}
\item[Anatomical data preprocessing]
A total of 0 T1-weighted (T1w) images were found within the input BIDS
dataset. Anatomical preprocessing was reused from previously existing
derivative objects.
\item[Functional data preprocessing]
For each of the 3 BOLD runs found per subject (across all tasks and
sessions), the following preprocessing was performed. First, a reference
volume and its skull-stripped version were generated by aligning and
averaging 1 single-band references (SBRefs). A B0-nonuniformity map (or
\emph{fieldmap}) was estimated based on two (or more) echo-planar
imaging (EPI) references with opposing phase-encoding directions, with
\texttt{3dQwarp} \citet{afni} (AFNI 20160207). Based on the estimated
susceptibility distortion, a corrected EPI (echo-planar imaging)
reference was calculated for a more accurate co-registration with the
anatomical reference. The BOLD reference was then co-registered to the
T1w reference using \texttt{bbregister} (FreeSurfer) which implements
boundary-based registration \citep{bbr}. Co-registration was configured
with six degrees of freedom. Head-motion parameters with respect to the
BOLD reference (transformation matrices, and six corresponding rotation
and translation parameters) are estimated before any spatiotemporal
filtering using \texttt{mcflirt} \citep[FSL 5.0.9,][]{mcflirt}. First, a
reference volume and its skull-stripped version were generated using a
custom methodology of \emph{fMRIPrep}. The BOLD time-series were
resampled onto the following surfaces (FreeSurfer reconstruction
nomenclature): \emph{fsaverage}. The BOLD time-series (including
slice-timing correction when applied) were resampled onto their
original, native space by applying a single, composite transform to
correct for head-motion and susceptibility distortions. These resampled
BOLD time-series will be referred to as \emph{preprocessed BOLD in
original space}, or just \emph{preprocessed BOLD}. The BOLD time-series
were resampled into standard space, generating a \emph{preprocessed BOLD
run in MNI152NLin2009cAsym space}. First, a reference volume and its
skull-stripped version were generated using a custom methodology of
\emph{fMRIPrep}. \emph{Grayordinates} files \citep{hcppipelines}
containing 91k samples were also generated using the highest-resolution
\texttt{fsaverage} as intermediate standardized surface space. Several
confounding time-series were calculated based on the \emph{preprocessed
BOLD}: framewise displacement (FD), DVARS and three region-wise global
signals. FD was computed using two formulations following Power
(absolute sum of relative motions, \citet{power_fd_dvars}) and Jenkinson
(relative root mean square displacement between affines,
\citet{mcflirt}). FD and DVARS are calculated for each functional run,
both using their implementations in \emph{Nipype} \citep[following the
definitions by][]{power_fd_dvars}. The three global signals are
extracted within the CSF, the WM, and the whole-brain masks.
Additionally, a set of physiological regressors were extracted to allow
for component-based noise correction \citep[\emph{CompCor},][]{compcor}.
Principal components are estimated after high-pass filtering the
\emph{preprocessed BOLD} time-series (using a discrete cosine filter
with 128s cut-off) for the two \emph{CompCor} variants: temporal
(tCompCor) and anatomical (aCompCor). tCompCor components are then
calculated from the top 2\% variable voxels within the brain mask. For
aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are
generated in anatomical space. The implementation differs from that of
Behzadi et al.~in that instead of eroding the masks by 2 pixels on BOLD
space, the aCompCor masks are subtracted a mask of pixels that likely
contain a volume fraction of GM. This mask is obtained by dilating a GM
mask extracted from the FreeSurfer's \emph{aseg} segmentation, and it
ensures components are not extracted from voxels containing a minimal
fraction of GM. Finally, these masks are resampled into BOLD space and
binarized by thresholding at 0.99 (as in the original implementation).
Components are also calculated separately within the WM and CSF masks.
For each CompCor decomposition, the \emph{k} components with the largest
singular values are retained, such that the retained components' time
series are sufficient to explain 50 percent of variance across the
nuisance mask (CSF, WM, combined, or temporal). The remaining components
are dropped from consideration. The head-motion estimates calculated in
the correction step were also placed within the corresponding confounds
file. The confound time series derived from head motion estimates and
global signals were expanded with the inclusion of temporal derivatives
and quadratic terms for each \citep{confounds_satterthwaite_2013}.
Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS
were annotated as motion outliers. All resamplings can be performed with
\emph{a single interpolation step} by composing all the pertinent
transformations (i.e.~head-motion transform matrices, susceptibility
distortion correction when available, and co-registrations to anatomical
and output spaces). Gridded (volumetric) resamplings were performed
using \texttt{antsApplyTransforms} (ANTs), configured with Lanczos
interpolation to minimize the smoothing effects of other kernels
\citep{lanczos}. Non-gridded (surface) resamplings were performed using
\texttt{mri\_vol2surf} (FreeSurfer).
\end{description}
Many internal operations of \emph{fMRIPrep} use \emph{Nilearn} 0.6.2
\citep[RRID:SCR\_001362]{nilearn}, mostly within the functional
processing workflow. For more details of the pipeline, see
\href{https://fmriprep.readthedocs.io/en/latest/workflows.html}{the
section corresponding to workflows in \emph{fMRIPrep}'s documentation}.
\hypertarget{copyright-waiver}{%
\subsubsection{Copyright Waiver}\label{copyright-waiver}}
The above boilerplate text was automatically generated by fMRIPrep with
the express intention that users should copy and paste this text into
their manuscripts \emph{unchanged}. It is released under the
\href{https://creativecommons.org/publicdomain/zero/1.0/}{CC0} license.
\hypertarget{references}{%
\subsubsection{References}\label{references}}
\bibliography{/usr/local/miniconda/lib/python3.7/site-packages/fmriprep/data/boilerplate.bib}</pre>
<h3>Bibliography</h3>
<pre>@article{fmriprep1,
author = {Esteban, Oscar and Markiewicz, Christopher and Blair, Ross W and Moodie, Craig and Isik, Ayse Ilkay and Erramuzpe Aliaga, Asier and Kent, James and Goncalves, Mathias and DuPre, Elizabeth and Snyder, Madeleine and Oya, Hiroyuki and Ghosh, Satrajit and Wright, Jessey and Durnez, Joke and Poldrack, Russell and Gorgolewski, Krzysztof Jacek},
title = {{fMRIPrep}: a robust preprocessing pipeline for functional {MRI}},
year = {2018},
doi = {10.1038/s41592-018-0235-4},
journal = {Nature Methods}
}
@article{fmriprep2,
author = {Esteban, Oscar and Blair, Ross and Markiewicz, Christopher J. and Berleant, Shoshana L. and Moodie, Craig and Ma, Feilong and Isik, Ayse Ilkay and Erramuzpe, Asier and Kent, James D. andGoncalves, Mathias and DuPre, Elizabeth and Sitek, Kevin R. and Gomez, Daniel E. P. and Lurie, Daniel J. and Ye, Zhifang and Poldrack, Russell A. and Gorgolewski, Krzysztof J.},
title = {fMRIPrep},
year = 2018,
doi = {10.5281/zenodo.852659},
publisher = {Zenodo},
journal = {Software}
}
@article{nipype1,
author = {Gorgolewski, K. and Burns, C. D. and Madison, C. and Clark, D. and Halchenko, Y. O. and Waskom, M. L. and Ghosh, S.},
doi = {10.3389/fninf.2011.00013},
journal = {Frontiers in Neuroinformatics},
pages = 13,
shorttitle = {Nipype},
title = {Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python},
volume = 5,
year = 2011
}
@article{nipype2,
author = {Gorgolewski, Krzysztof J. and Esteban, Oscar and Markiewicz, Christopher J. and Ziegler, Erik and Ellis, David Gage and Notter, Michael Philipp and Jarecka, Dorota and Johnson, Hans and Burns, Christopher and Manhães-Savio, Alexandre and Hamalainen, Carlo and Yvernault, Benjamin and Salo, Taylor and Jordan, Kesshi and Goncalves, Mathias and Waskom, Michael and Clark, Daniel and Wong, Jason and Loney, Fred and Modat, Marc and Dewey, Blake E and Madison, Cindee and Visconti di Oleggio Castello, Matteo and Clark, Michael G. and Dayan, Michael and Clark, Dav and Keshavan, Anisha and Pinsard, Basile and Gramfort, Alexandre and Berleant, Shoshana and Nielson, Dylan M. and Bougacha, Salma and Varoquaux, Gael and Cipollini, Ben and Markello, Ross and Rokem, Ariel and Moloney, Brendan and Halchenko, Yaroslav O. and Wassermann , Demian and Hanke, Michael and Horea, Christian and Kaczmarzyk, Jakub and Gilles de Hollander and DuPre, Elizabeth and Gillman, Ashley and Mordom, David and Buchanan, Colin and Tungaraza, Rosalia and Pauli, Wolfgang M. and Iqbal, Shariq and Sikka, Sharad and Mancini, Matteo and Schwartz, Yannick and Malone, Ian B. and Dubois, Mathieu and Frohlich, Caroline and Welch, David and Forbes, Jessica and Kent, James and Watanabe, Aimi and Cumba, Chad and Huntenburg, Julia M. and Kastman, Erik and Nichols, B. Nolan and Eshaghi, Arman and Ginsburg, Daniel and Schaefer, Alexander and Acland, Benjamin and Giavasis, Steven and Kleesiek, Jens and Erickson, Drew and Küttner, René and Haselgrove, Christian and Correa, Carlos and Ghayoor, Ali and Liem, Franz and Millman, Jarrod and Haehn, Daniel and Lai, Jeff and Zhou, Dale and Blair, Ross and Glatard, Tristan and Renfro, Mandy and Liu, Siqi and Kahn, Ari E. and Pérez-García, Fernando and Triplett, William and Lampe, Leonie and Stadler, Jörg and Kong, Xiang-Zhen and Hallquist, Michael and Chetverikov, Andrey and Salvatore, John and Park, Anne and Poldrack, Russell and Craddock, R. Cameron and Inati, Souheil and Hinds, Oliver and Cooper, Gavin and Perkins, L. Nathan and Marina, Ana and Mattfeld, Aaron and Noel, Maxime and Lukas Snoek and Matsubara, K and Cheung, Brian and Rothmei, Simon and Urchs, Sebastian and Durnez, Joke and Mertz, Fred and Geisler, Daniel and Floren, Andrew and Gerhard, Stephan and Sharp, Paul and Molina-Romero, Miguel and Weinstein, Alejandro and Broderick, William and Saase, Victor and Andberg, Sami Kristian and Harms, Robbert and Schlamp, Kai and Arias, Jaime and Papadopoulos Orfanos, Dimitri and Tarbert, Claire and Tambini, Arielle and De La Vega, Alejandro and Nickson, Thomas and Brett, Matthew and Falkiewicz, Marcel and Podranski, Kornelius and Linkersdörfer, Janosch and Flandin, Guillaume and Ort, Eduard and Shachnev, Dmitry and McNamee, Daniel and Davison, Andrew and Varada, Jan and Schwabacher, Isaac and Pellman, John and Perez-Guevara, Martin and Khanuja, Ranjeet and Pannetier, Nicolas and McDermottroe, Conor and Ghosh, Satrajit},
title = {Nipype},
year = 2018,
doi = {10.5281/zenodo.596855},
publisher = {Zenodo},
journal = {Software}
}
@article{n4,
author = {Tustison, N. J. and Avants, B. B. and Cook, P. A. and Zheng, Y. and Egan, A. and Yushkevich, P. A. and Gee, J. C.},
doi = {10.1109/TMI.2010.2046908},
issn = {0278-0062},
journal = {IEEE Transactions on Medical Imaging},
number = 6,
pages = {1310-1320},
shorttitle = {N4ITK},
title = {N4ITK: Improved N3 Bias Correction},
volume = 29,
year = 2010
}
@article{fs_reconall,
author = {Dale, Anders M. and Fischl, Bruce and Sereno, Martin I.},
doi = {10.1006/nimg.1998.0395},
issn = {1053-8119},
journal = {NeuroImage},
number = 2,
pages = {179-194},
shorttitle = {Cortical Surface-Based Analysis},
title = {Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction},
url = {http://www.sciencedirect.com/science/article/pii/S1053811998903950},
volume = 9,
year = 1999
}
@article{mindboggle,
author = {Klein, Arno and Ghosh, Satrajit S. and Bao, Forrest S. and Giard, Joachim and Häme, Yrjö and Stavsky, Eliezer and Lee, Noah and Rossa, Brian and Reuter, Martin and Neto, Elias Chaibub and Keshavan, Anisha},
doi = {10.1371/journal.pcbi.1005350},
issn = {1553-7358},
journal = {PLOS Computational Biology},
number = 2,
pages = {e1005350},
title = {Mindboggling morphometry of human brains},
url = {http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005350},
volume = 13,
year = 2017
}
@article{mni152lin,
title = {A {Probabilistic} {Atlas} of the {Human} {Brain}: {Theory} and {Rationale} for {Its} {Development}: {The} {International} {Consortium} for {Brain} {Mapping} ({ICBM})},
author = {Mazziotta, John C. and Toga, Arthur W. and Evans, Alan and Fox, Peter and Lancaster, Jack},
volume = {2},
issn = {1053-8119},
shorttitle = {A {Probabilistic} {Atlas} of the {Human} {Brain}},
doi = {10.1006/nimg.1995.1012},
number = {2, Part A},
journal = {NeuroImage},
year = {1995},
pages = {89--101}
}
@article{mni152nlin2009casym,
title = {Unbiased nonlinear average age-appropriate brain templates from birth to adulthood},
author = {Fonov, VS and Evans, AC and McKinstry, RC and Almli, CR and Collins, DL},
doi = {10.1016/S1053-8119(09)70884-5},
journal = {NeuroImage},
pages = {S102},
volume = {47, Supplement 1},
year = 2009
}
@article{mni152nlin6asym,
author = {Evans, AC and Janke, AL and Collins, DL and Baillet, S},
title = {Brain templates and atlases},
doi = {10.1016/j.neuroimage.2012.01.024},
journal = {NeuroImage},
volume = {62},
number = {2},
pages = {911--922},
year = 2012
}
@article{ants,
author = {Avants, B.B. and Epstein, C.L. and Grossman, M. and Gee, J.C.},
doi = {10.1016/j.media.2007.06.004},
issn = {1361-8415},
journal = {Medical Image Analysis},
number = 1,
pages = {26-41},
shorttitle = {Symmetric diffeomorphic image registration with cross-correlation},
title = {Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain},
url = {http://www.sciencedirect.com/science/article/pii/S1361841507000606},
volume = 12,
year = 2008
}
@article{fsl_fast,
author = {Zhang, Y. and Brady, M. and Smith, S.},
doi = {10.1109/42.906424},
issn = {0278-0062},
journal = {IEEE Transactions on Medical Imaging},
number = 1,
pages = {45-57},
title = {Segmentation of brain {MR} images through a hidden Markov random field model and the expectation-maximization algorithm},
volume = 20,
year = 2001
}
@article{fieldmapless1,
author = {Wang, Sijia and Peterson, Daniel J. and Gatenby, J. C. and Li, Wenbin and Grabowski, Thomas J. and Madhyastha, Tara M.},
doi = {10.3389/fninf.2017.00017},
issn = {1662-5196},
journal = {Frontiers in Neuroinformatics},
language = {English},
title = {Evaluation of Field Map and Nonlinear Registration Methods for Correction of Susceptibility Artifacts in Diffusion {MRI}},
url = {http://journal.frontiersin.org/article/10.3389/fninf.2017.00017/full},
volume = 11,
year = 2017
}
@phdthesis{fieldmapless2,
address = {Berlin},
author = {Huntenburg, Julia M.},
language = {eng},
school = {Freie Universität},
title = {Evaluating nonlinear coregistration of {BOLD} {EPI} and T1w images},
type = {Master's Thesis},
url = {http://hdl.handle.net/11858/00-001M-0000-002B-1CB5-A},
year = 2014
}
@article{fieldmapless3,
author = {Treiber, Jeffrey Mark and White, Nathan S. and Steed, Tyler Christian and Bartsch, Hauke and Holland, Dominic and Farid, Nikdokht and McDonald, Carrie R. and Carter, Bob S. and Dale, Anders Martin and Chen, Clark C.},
doi = {10.1371/journal.pone.0152472},
issn = {1932-6203},
journal = {PLOS ONE},
number = 3,
pages = {e0152472},
title = {Characterization and Correction of Geometric Distortions in 814 Diffusion Weighted Images},
url = {http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152472},
volume = 11,
year = 2016
}
@article{flirt,
title = {A global optimisation method for robust affine registration of brain images},
volume = {5},
issn = {1361-8415},
url = {http://www.sciencedirect.com/science/article/pii/S1361841501000366},
doi = {10.1016/S1361-8415(01)00036-6},
number = {2},
urldate = {2018-07-27},
journal = {Medical Image Analysis},
author = {Jenkinson, Mark and Smith, Stephen},
year = {2001},
keywords = {Affine transformation, flirt, fsl, Global optimisation, Multi-resolution search, Multimodal registration, Robustness},
pages = {143--156}
}
@article{mcflirt,
author = {Jenkinson, Mark and Bannister, Peter and Brady, Michael and Smith, Stephen},
doi = {10.1006/nimg.2002.1132},
issn = {1053-8119},
journal = {NeuroImage},
number = 2,
pages = {825-841},
title = {Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images},
url = {http://www.sciencedirect.com/science/article/pii/S1053811902911328},
volume = 17,
year = 2002
}
@article{bbr,
author = {Greve, Douglas N and Fischl, Bruce},
doi = {10.1016/j.neuroimage.2009.06.060},
issn = {1095-9572},
journal = {NeuroImage},
number = 1,
pages = {63-72},
title = {Accurate and robust brain image alignment using boundary-based registration},
volume = 48,
year = 2009
}
@article{aroma,
author = {Pruim, Raimon H. R. and Mennes, Maarten and van Rooij, Daan and Llera, Alberto and Buitelaar, Jan K. and Beckmann, Christian F.},
doi = {10.1016/j.neuroimage.2015.02.064},
issn = {1053-8119},
journal = {NeuroImage},
number = {Supplement C},
pages = {267-277},
shorttitle = {ICA-AROMA},
title = {ICA-{AROMA}: A robust {ICA}-based strategy for removing motion artifacts from fMRI data},
url = {http://www.sciencedirect.com/science/article/pii/S1053811915001822},
volume = 112,
year = 2015
}
@article{power_fd_dvars,
author = {Power, Jonathan D. and Mitra, Anish and Laumann, Timothy O. and Snyder, Abraham Z. and Schlaggar, Bradley L. and Petersen, Steven E.},
doi = {10.1016/j.neuroimage.2013.08.048},
issn = {1053-8119},
journal = {NeuroImage},
number = {Supplement C},
pages = {320-341},
title = {Methods to detect, characterize, and remove motion artifact in resting state fMRI},
url = {http://www.sciencedirect.com/science/article/pii/S1053811913009117},
volume = 84,
year = 2014
}
@article{confounds_satterthwaite_2013,
author = {Satterthwaite, Theodore D. and Elliott, Mark A. and Gerraty, Raphael T. and Ruparel, Kosha and Loughead, James and Calkins, Monica E. and Eickhoff, Simon B. and Hakonarson, Hakon and Gur, Ruben C. and Gur, Raquel E. and Wolf, Daniel H.},
doi = {10.1016/j.neuroimage.2012.08.052},
issn = {10538119},
journal = {NeuroImage},
number = 1,
pages = {240--256},
title = {{An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data}},
url = {http://linkinghub.elsevier.com/retrieve/pii/S1053811912008609},
volume = 64,
year = 2013
}
@article{nilearn,
author = {Abraham, Alexandre and Pedregosa, Fabian and Eickenberg, Michael and Gervais, Philippe and Mueller, Andreas and Kossaifi, Jean and Gramfort, Alexandre and Thirion, Bertrand and Varoquaux, Gael},
doi = {10.3389/fninf.2014.00014},
issn = {1662-5196},
journal = {Frontiers in Neuroinformatics},
language = {English},
title = {Machine learning for neuroimaging with scikit-learn},
url = {https://www.frontiersin.org/articles/10.3389/fninf.2014.00014/full},
volume = 8,
year = 2014
}
@article{lanczos,
author = {Lanczos, C.},
doi = {10.1137/0701007},
issn = {0887-459X},
journal = {Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis},
number = 1,
pages = {76-85},
title = {Evaluation of Noisy Data},
url = {http://epubs.siam.org/doi/10.1137/0701007},
volume = 1,
year = 1964
}
@article{compcor,
author = {Behzadi, Yashar and Restom, Khaled and Liau, Joy and Liu, Thomas T.},
doi = {10.1016/j.neuroimage.2007.04.042},
issn = {1053-8119},
journal = {NeuroImage},
number = 1,
pages = {90-101},
title = {A component based noise correction method ({CompCor}) for {BOLD} and perfusion based fMRI},
url = {http://www.sciencedirect.com/science/article/pii/S1053811907003837},
volume = 37,
year = 2007
}
@article{hcppipelines,
author = {Glasser, Matthew F. and Sotiropoulos, Stamatios N. and Wilson, J. Anthony and Coalson, Timothy S. and Fischl, Bruce and Andersson, Jesper L. and Xu, Junqian and Jbabdi, Saad and Webster, Matthew and Polimeni, Jonathan R. and Van Essen, David C. and Jenkinson, Mark},
doi = {10.1016/j.neuroimage.2013.04.127},
issn = {1053-8119},
journal = {NeuroImage},
pages = {105-124},
series = {Mapping the Connectome},
title = {The minimal preprocessing pipelines for the Human Connectome Project},
url = {http://www.sciencedirect.com/science/article/pii/S1053811913005053},
volume = 80,
year = 2013
}
@article{fs_template,
author = {Reuter, Martin and Rosas, Herminia Diana and Fischl, Bruce},
doi = {10.1016/j.neuroimage.2010.07.020},
journal = {NeuroImage},
number = 4,
pages = {1181-1196},
title = {Highly accurate inverse consistent registration: A robust approach},
volume = 53,
year = 2010
}
@article{afni,
author = {Cox, Robert W. and Hyde, James S.},
doi = {10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L},
journal = {NMR in Biomedicine},
number = {4-5},