-
Notifications
You must be signed in to change notification settings - Fork 26
/
dplyr-comparison.html
1209 lines (912 loc) · 142 KB
/
dplyr-comparison.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<title>Introduction to dplyr</title>
<script type="text/javascript">
window.onload = function() {
var imgs = document.getElementsByTagName('img'), i, img;
for (i = 0; i < imgs.length; i++) {
img = imgs[i];
// center an image if it is the only element of its parent
if (img.parentElement.childElementCount === 1)
img.parentElement.style.textAlign = 'center';
}
};
</script>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .hljs-operator,
pre .hljs-paren {
color: rgb(104, 118, 135)
}
pre .hljs-literal {
color: #990073
}
pre .hljs-number {
color: #099;
}
pre .hljs-comment {
color: #998;
font-style: italic
}
pre .hljs-keyword {
color: #900;
font-weight: bold
}
pre .hljs-identifier {
color: rgb(0, 0, 0);
}
pre .hljs-string {
color: #d14;
}
</style>
<!-- R & Python syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function e(e){return e.replace(/&/gm,"&").replace(/</gm,"<").replace(/>/gm,">")}function t(e){return e.nodeName.toLowerCase()}function n(e,t){var n=e&&e.exec(t);return n&&0==n.index}function r(e){var t=(e.className+" "+(e.parentNode?e.parentNode.className:"")).split(/\s+/);return t=t.map(function(e){return e.replace(/^lang(uage)?-/,"")}),t.filter(function(e){return m(e)||/no(-?)highlight/.test(e)})[0]}function i(e,t){var n={};for(var r in e)n[r]=e[r];if(t)for(var r in t)n[r]=t[r];return n}function a(e){var n=[];return function r(e,i){for(var a=e.firstChild;a;a=a.nextSibling)3==a.nodeType?i+=a.nodeValue.length:1==a.nodeType&&(n.push({event:"start",offset:i,node:a}),i=r(a,i),t(a).match(/br|hr|img|input/)||n.push({event:"stop",offset:i,node:a}));return i}(e,0),n}function s(n,r,i){function a(){return n.length&&r.length?n[0].offset!=r[0].offset?n[0].offset<r[0].offset?n:r:"start"==r[0].event?n:r:n.length?n:r}function s(n){function r(t){return" "+t.nodeName+'="'+e(t.value)+'"'}l+="<"+t(n)+Array.prototype.map.call(n.attributes,r).join("")+">"}function o(e){l+="</"+t(e)+">"}function c(e){("start"==e.event?s:o)(e.node)}for(var u=0,l="",f=[];n.length||r.length;){var h=a();if(l+=e(i.substr(u,h[0].offset-u)),u=h[0].offset,h==n){f.reverse().forEach(o);do c(h.splice(0,1)[0]),h=a();while(h==n&&h.length&&h[0].offset==u);f.reverse().forEach(s)}else"start"==h[0].event?f.push(h[0].node):f.pop(),c(h.splice(0,1)[0])}return l+e(i.substr(u))}function o(e){function t(e){return e&&e.source||e}function n(n,r){return RegExp(t(n),"m"+(e.cI?"i":"")+(r?"g":""))}function r(a,s){if(!a.compiled){if(a.compiled=!0,a.k=a.k||a.bK,a.k){var o={},c=function(t,n){e.cI&&(n=n.toLowerCase()),n.split(" ").forEach(function(e){var n=e.split("|");o[n[0]]=[t,n[1]?Number(n[1]):1]})};"string"==typeof a.k?c("keyword",a.k):Object.keys(a.k).forEach(function(e){c(e,a.k[e])}),a.k=o}a.lR=n(a.l||/\b[A-Za-z0-9_]+\b/,!0),s&&(a.bK&&(a.b="\\b("+a.bK.split(" ").join("|")+")\\b"),a.b||(a.b=/\B|\b/),a.bR=n(a.b),a.e||a.eW||(a.e=/\B|\b/),a.e&&(a.eR=n(a.e)),a.tE=t(a.e)||"",a.eW&&s.tE&&(a.tE+=(a.e?"|":"")+s.tE)),a.i&&(a.iR=n(a.i)),void 0===a.r&&(a.r=1),a.c||(a.c=[]);var u=[];a.c.forEach(function(e){e.v?e.v.forEach(function(t){u.push(i(e,t))}):u.push("self"==e?a:e)}),a.c=u,a.c.forEach(function(e){r(e,a)}),a.starts&&r(a.starts,s);var l=a.c.map(function(e){return e.bK?"\\.?("+e.b+")\\.?":e.b}).concat([a.tE,a.i]).map(t).filter(Boolean);a.t=l.length?n(l.join("|"),!0):{exec:function(){return null}}}}r(e)}function c(t,r,i,a){function s(e,t){for(var r=0;r<t.c.length;r++)if(n(t.c[r].bR,e))return t.c[r]}function l(e,t){return n(e.eR,t)?e:e.eW?l(e.parent,t):void 0}function f(e,t){return!i&&n(t.iR,e)}function h(e,t){var n=x.cI?t[0].toLowerCase():t[0];return e.k.hasOwnProperty(n)&&e.k[n]}function g(e,t,n,r){var i=r?"":N.classPrefix,a='<span class="'+i,s=n?"":"</span>";return a+=e+'">',a+t+s}function p(){if(!w.k)return e(B);var t="",n=0;w.lR.lastIndex=0;for(var r=w.lR.exec(B);r;){t+=e(B.substr(n,r.index-n));var i=h(w,r);i?(y+=i[1],t+=g(i[0],e(r[0]))):t+=e(r[0]),n=w.lR.lastIndex,r=w.lR.exec(B)}return t+e(B.substr(n))}function v(){if(w.sL&&!E[w.sL])return e(B);var t=w.sL?c(w.sL,B,!0,L[w.sL]):u(B);return w.r>0&&(y+=t.r),"continuous"==w.subLanguageMode&&(L[w.sL]=t.top),g(t.language,t.value,!1,!0)}function b(){return void 0!==w.sL?v():p()}function d(t,n){var r=t.cN?g(t.cN,"",!0):"";t.rB?(M+=r,B=""):t.eB?(M+=e(n)+r,B=""):(M+=r,B=n),w=Object.create(t,{parent:{value:w}})}function R(t,n){if(B+=t,void 0===n)return M+=b(),0;var r=s(n,w);if(r)return M+=b(),d(r,n),r.rB?0:n.length;var i=l(w,n);if(i){var a=w;a.rE||a.eE||(B+=n),M+=b();do w.cN&&(M+="</span>"),y+=w.r,w=w.parent;while(w!=i.parent);return a.eE&&(M+=e(n)),B="",i.starts&&d(i.starts,""),a.rE?0:n.length}if(f(n,w))throw new Error('Illegal lexeme "'+n+'" for mode "'+(w.cN||"<unnamed>")+'"');return B+=n,n.length||1}var x=m(t);if(!x)throw new Error('Unknown language: "'+t+'"');o(x);for(var w=a||x,L={},M="",k=w;k!=x;k=k.parent)k.cN&&(M=g(k.cN,"",!0)+M);var B="",y=0;try{for(var C,I,j=0;;){if(w.t.lastIndex=j,C=w.t.exec(r),!C)break;I=R(r.substr(j,C.index-j),C[0]),j=C.index+I}R(r.substr(j));for(var k=w;k.parent;k=k.parent)k.cN&&(M+="</span>");return{r:y,value:M,language:t,top:w}}catch(A){if(-1!=A.message.indexOf("Illegal"))return{r:0,value:e(r)};throw A}}function u(t,n){n=n||N.languages||Object.keys(E);var r={r:0,value:e(t)},i=r;return n.forEach(function(e){if(m(e)){var n=c(e,t,!1);n.language=e,n.r>i.r&&(i=n),n.r>r.r&&(i=r,r=n)}}),i.language&&(r.second_best=i),r}function l(e){return N.tabReplace&&(e=e.replace(/^((<[^>]+>|\t)+)/gm,function(e,t){return t.replace(/\t/g,N.tabReplace)})),N.useBR&&(e=e.replace(/\n/g,"<br>")),e}function f(e,t,n){var r=t?R[t]:n,i=[e.trim()];return e.match(/(\s|^)hljs(\s|$)/)||i.push("hljs"),r&&i.push(r),i.join(" ").trim()}function h(e){var t=r(e);if(!/no(-?)highlight/.test(t)){var n;N.useBR?(n=document.createElementNS("http://www.w3.org/1999/xhtml","div"),n.innerHTML=e.innerHTML.replace(/\n/g,"").replace(/<br[ \/]*>/g,"\n")):n=e;var i=n.textContent,o=t?c(t,i,!0):u(i),h=a(n);if(h.length){var g=document.createElementNS("http://www.w3.org/1999/xhtml","div");g.innerHTML=o.value,o.value=s(h,a(g),i)}o.value=l(o.value),e.innerHTML=o.value,e.className=f(e.className,t,o.language),e.result={language:o.language,re:o.r},o.second_best&&(e.second_best={language:o.second_best.language,re:o.second_best.r})}}function g(e){N=i(N,e)}function p(){if(!p.called){p.called=!0;var e=document.querySelectorAll("pre code");Array.prototype.forEach.call(e,h)}}function v(){addEventListener("DOMContentLoaded",p,!1),addEventListener("load",p,!1)}function b(e,t){var n=E[e]=t(this);n.aliases&&n.aliases.forEach(function(t){R[t]=e})}function d(){return Object.keys(E)}function m(e){return E[e]||E[R[e]]}var N={classPrefix:"hljs-",tabReplace:null,useBR:!1,languages:void 0},E={},R={};this.highlight=c,this.highlightAuto=u,this.fixMarkup=l,this.highlightBlock=h,this.configure=g,this.initHighlighting=p,this.initHighlightingOnLoad=v,this.registerLanguage=b,this.listLanguages=d,this.getLanguage=m,this.inherit=i,this.IR="[a-zA-Z][a-zA-Z0-9_]*",this.UIR="[a-zA-Z_][a-zA-Z0-9_]*",this.NR="\\b\\d+(\\.\\d+)?",this.CNR="(\\b0[xX][a-fA-F0-9]+|(\\b\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)",this.BNR="\\b(0b[01]+)",this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|-|-=|/=|/|:|;|<<|<<=|<=|<|===|==|=|>>>=|>>=|>=|>>>|>>|>|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~",this.BE={b:"\\\\[\\s\\S]",r:0},this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE]},this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE]},this.PWM={b:/\b(a|an|the|are|I|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such)\b/},this.CLCM={cN:"comment",b:"//",e:"$",c:[this.PWM]},this.CBCM={cN:"comment",b:"/\\*",e:"\\*/",c:[this.PWM]},this.HCM={cN:"comment",b:"#",e:"$",c:[this.PWM]},this.NM={cN:"number",b:this.NR,r:0},this.CNM={cN:"number",b:this.CNR,r:0},this.BNM={cN:"number",b:this.BNR,r:0},this.CSSNM={cN:"number",b:this.NR+"(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",r:0},this.RM={cN:"regexp",b:/\//,e:/\/[gimuy]*/,i:/\n/,c:[this.BE,{b:/\[/,e:/\]/,r:0,c:[this.BE]}]},this.TM={cN:"title",b:this.IR,r:0},this.UTM={cN:"title",b:this.UIR,r:0}};hljs.registerLanguage("python",function(e){var r={cN:"prompt",b:/^(>>>|\.\.\.) /},b={cN:"string",c:[e.BE],v:[{b:/(u|b)?r?'''/,e:/'''/,c:[r],r:10},{b:/(u|b)?r?"""/,e:/"""/,c:[r],r:10},{b:/(u|r|ur)'/,e:/'/,r:10},{b:/(u|r|ur)"/,e:/"/,r:10},{b:/(b|br)'/,e:/'/},{b:/(b|br)"/,e:/"/},e.ASM,e.QSM]},i={cN:"number",r:0,v:[{b:e.BNR+"[lLjJ]?"},{b:"\\b(0o[0-7]+)[lLjJ]?"},{b:e.CNR+"[lLjJ]?"}]},l={cN:"params",b:/\(/,e:/\)/,c:["self",r,i,b]},n={e:/:/,i:/[${=;\n]/,c:[e.UTM,l]};return{aliases:["py","gyp"],k:{keyword:"and elif is global as in if from raise for except finally print import pass return exec else break not with class assert yield try while continue del or def lambda nonlocal|10 None True False",built_in:"Ellipsis NotImplemented"},i:/(<\/|->|\?)/,c:[r,i,b,e.HCM,e.inherit(n,{cN:"function",bK:"def",r:10}),e.inherit(n,{cN:"class",bK:"class"}),{cN:"decorator",b:/@/,e:/$/},{b:/\b(print|exec)\(/}]}});hljs.registerLanguage("r",function(e){var r="([a-zA-Z]|\\.[a-zA-Z.])[a-zA-Z0-9._]*";return{c:[e.HCM,{b:r,l:r,k:{keyword:"function if in break next repeat else for return switch while try tryCatch|10 stop warning require library attach detach source setMethod setGeneric setGroupGeneric setClass ...|10",literal:"NULL NA TRUE FALSE T F Inf NaN NA_integer_|10 NA_real_|10 NA_character_|10 NA_complex_|10"},r:0},{cN:"number",b:"0[xX][0-9a-fA-F]+[Li]?\\b",r:0},{cN:"number",b:"\\d+(?:[eE][+\\-]?\\d*)?L\\b",r:0},{cN:"number",b:"\\d+\\.(?!\\d)(?:i\\b)?",r:0},{cN:"number",b:"\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",r:0},{b:"`",e:"`",r:0},{cN:"string",c:[e.BE],v:[{b:'"',e:'"'},{b:"'",e:"'"}]}]}});
hljs.initHighlightingOnLoad();
</script>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 13px;
}
body {
/* max-width: 800px; */
margin: auto;
padding: 1em;
line-height: 20px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre, img {
max-width: 100%;
}
pre {
overflow-x: auto;
}
pre code {
display: block; padding: 0.5em;
}
code {
font-size: 92%;
border: 1px solid #ccc;
}
code[class] {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
td {
vertical-align: top;
width: 33%;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
</head>
<body>
<!--
%\VignetteEngine{knitr}
%\VignetteIndexEntry{Introduction to dplyr}
-->
<h1>Introduction to dplyr</h1>
R code snippets are matched with corresponding translations into pandas, with and without pandas-ply.
<table>
<tr><td>
<h2>dplyr</h2>
</td><td>
<h2>pandas</h2>
</td><td>
<h2>pandas-ply</h2>
</td></tr>
<tr><td>
<p>When working with data you must:</p>
<ul>
<li><p>Figure out what you want to do.</p></li>
<li><p>Precisely describe what you want in the form of a computer program.</p></li>
<li><p>Execute the code.</p></li>
</ul>
<p>The dplyr package makes each of these steps as fast and easy as possible by:</p>
<ul>
<li><p>Elucidating the most common data manipulation operations, so that your
options are helpfully constrained when thinking about how to tackle a
problem.</p></li>
<li><p>Providing simple functions that correspond to the most common
data manipulation verbs, so that you can easily translate your thoughts
into code.</p></li>
<li><p>Using efficient data storage backends, so that you spend as little time
waiting for the computer as possible.</p></li>
</ul>
<p>The goal of this document is to introduce you to the basic tools that dplyr provides, and show how you to apply them to data frames. Other vignettes provide more details on specific topics:</p>
<ul>
<li><p>databases: as well as in memory data frames, dplyr also connects to
databases. It allows you to work with remote, out-of-memory data, using
exactly the same tools, because dplyr will translate your R code into
the appropriate SQL.</p></li>
<li><p>benchmark-baseball: see how dplyr compares to other tools for data
manipulation on a realistic use case.</p></li>
<li><p>window-functions: a window function is a variation on an aggregation
function. Where an aggregate function uses <code>n</code> inputs to produce 1
output, a window function uses <code>n</code> inputs to produce <code>n</code> outputs.</p></li>
</ul>
<h2>Data: nycflights13</h2>
<p>To explore the basic data manipulation verbs of dplyr, we'll start with the built in
<code>nycflights13</code> data frame. This dataset contains all 336776 flights that departed from New York City in 2013. The data comes from the US <a href="http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120&Link=0">Bureau of Transporation Statistics</a>, and is documented in <code>?nycflights13</code></p>
<pre><code class="r">library(nycflights13)
</code></pre>
<pre><code>#> Warning: package 'nycflights13' was built under R version 3.1.1
</code></pre>
<pre><code>#>
#> Attaching package: 'nycflights13'
#>
#> The following object is masked _by_ '.GlobalEnv':
#>
#> planes
</code></pre>
<pre><code class="r">dim(flights)
</code></pre>
<pre><code>#> [1] 336776 16
</code></pre>
<pre><code class="r">head(flights)
</code></pre>
<pre><code>#> Source: local data frame [6 x 16]
#>
#> year month day dep_time dep_delay arr_time arr_delay carrier tailnum
#> 1 2013 1 1 517 2 830 11 UA N14228
#> 2 2013 1 1 533 4 850 20 UA N24211
#> 3 2013 1 1 542 2 923 33 AA N619AA
#> 4 2013 1 1 544 -1 1004 -18 B6 N804JB
#> .. ... ... ... ... ... ... ... ... ...
#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl)
</code></pre>
<p>dplyr can work with data frames as is, but if you're dealing with large data, it's worthwhile to convert them to a <code>tbl_df</code>: this is a wrapper around a data frame that won't accidentally print a lot of data to the screen.</p>
<h2>Single table verbs</h2>
<p>Dplyr aims to provide a function for each basic verb of data manipulating:</p>
<ul>
<li><code>filter()</code> (and <code>slice()</code>)</li>
<li><code>arrange()</code></li>
<li><code>select()</code> (and <code>rename()</code>)</li>
<li><code>distinct()</code></li>
<li><code>mutate()</code> (and <code>transmute()</code>)</li>
<li><code>summarise()</code></li>
<li><code>sample_n()</code> and <code>sample_frac()</code></li>
</ul>
<p>If you've used plyr before, many of these will be familar.</p>
<h2>Filter rows with <code>filter()</code></h2>
<p><code>filter()</code> allows you to select a subset of the rows of a data frame. The first argument is the name of the data frame, and the second and subsequent are filtering expressions evaluated in the context of that data frame:</p>
<p>For example, we can select all flights on January 1st with:</p>
</td></tr>
<tr><td>
<pre><code class="r">filter(flights, month == 1, day == 1)
</code></pre>
<pre><code>#> Source: local data frame [842 x 16]
#>
#> year month day dep_time dep_delay arr_time arr_delay carrier tailnum
#> 1 2013 1 1 517 2 830 11 UA N14228
#> 2 2013 1 1 533 4 850 20 UA N24211
#> 3 2013 1 1 542 2 923 33 AA N619AA
#> 4 2013 1 1 544 -1 1004 -18 B6 N804JB
#> .. ... ... ... ... ... ... ... ... ...
#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl)
</code></pre>
<p>This is equivalent to the more verbose:</p>
<pre><code class="r">flights[flights$month == 1 & flights$day == 1, ]
</code></pre>
<p><code>filter()</code> works similarly to <code>subset()</code> except that you can give it any number of filtering conditions which are joined together with <code>&</code> (not <code>&&</code> which is easy to do accidentally!). You can use other boolean operators explicitly:</p>
</td><td>
<pre><code class="python">flights[(flights.month == 1) & (flights.day == 1)]
</code></pre>
<p>This is similar to the "more verbose" notation available in R.</p>
<p>(Note that, due to python's order of precedence, the paretheses here are necessary.)</p>
</td><td>
<pre><code class="python">flights.ply_where(X.month == 1, X.day == 1)
</code></pre>
<p>The benefits of not repeating `flights` in the conditions are minor here, but if this selection were coming towards the end of a long series of transformations, it would be impractical to repeat the input dataframe's definition in the conditions, so the chain of pipes would have to come to some named end before the filtering could happen.</p>
</td></tr>
<tr><td>
<pre><code class="r">filter(flights, month == 1 | month == 2)
</code></pre>
</td><td>
<pre><code class="python">flights[(flights.month == 1) | (flights.day == 1)]
</code></pre>
</td><td>
<pre><code class="python">flights.ply_where((X.month == 1) | (X.day == 1))
</code></pre>
</td></tr>
<tr><td>
<p>To select rows by position, use <code>slice()</code>:</p>
<pre><code class="r">slice(flights, 1:10)
</code></pre>
<pre><code>#> Source: local data frame [10 x 16]
#>
#> year month day dep_time dep_delay arr_time arr_delay carrier tailnum
#> 1 2013 1 1 517 2 830 11 UA N14228
#> 2 2013 1 1 533 4 850 20 UA N24211
#> 3 2013 1 1 542 2 923 33 AA N619AA
#> 4 2013 1 1 544 -1 1004 -18 B6 N804JB
#> .. ... ... ... ... ... ... ... ... ...
#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl)
</code></pre>
</td></tr>
<tr><td>
<h2>Arrange rows with <code>arrange()</code></h2>
<p><code>arrange()</code> works similarly to <code>filter()</code> except that instead of filtering or selecting rows, it reorders them. It takes a data frame, and a set of column names (or more complicated expressions) to order by. If you provide more than one column name, each additional column will be used to break ties in the values of preceding columns:</p>
</td></tr>
<tr><td>
<pre><code class="r">arrange(flights, year, month, day)
</code></pre>
<pre><code>#> Source: local data frame [336,776 x 16]
#>
#> year month day dep_time dep_delay arr_time arr_delay carrier tailnum
#> 1 2013 1 1 517 2 830 11 UA N14228
#> 2 2013 1 1 533 4 850 20 UA N24211
#> 3 2013 1 1 542 2 923 33 AA N619AA
#> 4 2013 1 1 544 -1 1004 -18 B6 N804JB
#> .. ... ... ... ... ... ... ... ... ...
#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl)
</code></pre>
<p>Use <code>desc()</code> to order a column in descending order:</p>
<pre><code class="r">arrange(flights, desc(arr_delay))
</code></pre>
<pre><code>#> Source: local data frame [336,776 x 16]
#>
#> year month day dep_time dep_delay arr_time arr_delay carrier tailnum
#> 1 2013 1 9 641 1301 1242 1272 HA N384HA
#> 2 2013 6 15 1432 1137 1607 1127 MQ N504MQ
#> 3 2013 1 10 1121 1126 1239 1109 MQ N517MQ
#> 4 2013 9 20 1139 1014 1457 1007 AA N338AA
#> .. ... ... ... ... ... ... ... ... ...
#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl)
</code></pre>
<p><code>dplyr::arrange()</code> works the same way as <code>plyr::arrange()</code>. It's a straighforward wrapper around <code>order()</code> that requires less typing. The previous code is equivalent to:</p>
<pre><code class="r">flights[order(flights$year, flights$month, flights$day), ]
flights[order(desc(flights$arr_delay)), ]
</code></pre>
<h2>Select columns with <code>select()</code></h2>
<p>Often you work with large datasets with many columns where only a few are actually of interest to you. <code>select()</code> allows you to rapidly zoom in on a useful subset using operations that usually only work on numeric variable positions:</p>
</td><td>
<pre><code class="python">flights.sort(['year', 'month', 'day'])
</code></pre>
</td><td>
</td></tr>
<tr><td>
<pre><code class="r"># Select columns by name
select(flights, year, month, day)
</code></pre>
</td><td>
<pre><code class="python"># Select columns by name
flights[['year', 'month', 'day']]
</code></pre>
</td><td>
<pre><code class="py"># Select columns by name
flights.ply_select('year', 'month', 'day')
</code></pre>
</td></tr>
<tr><td>
<pre><code>#> Source: local data frame [336,776 x 3]
#>
#> year month day
#> 1 2013 1 1
#> 2 2013 1 1
#> 3 2013 1 1
#> 4 2013 1 1
#> .. ... ... ...
</code></pre>
<pre><code class="r"># Select all columns between year and day (inclusive)
select(flights, year:day)
</code></pre>
<pre><code>#> Source: local data frame [336,776 x 3]
#>
#> year month day
#> 1 2013 1 1
#> 2 2013 1 1
#> 3 2013 1 1
#> 4 2013 1 1
#> .. ... ... ...
</code></pre>
<pre><code class="r"># Select all columns except those from year to day (inclusive)
select(flights, -(year:day))
</code></pre>
</td></tr>
<tr><td>
<pre><code>#> Source: local data frame [336,776 x 13]
#>
#> dep_time dep_delay arr_time arr_delay carrier tailnum flight origin
#> 1 517 2 830 11 UA N14228 1545 EWR
#> 2 533 4 850 20 UA N24211 1714 LGA
#> 3 542 2 923 33 AA N619AA 1141 JFK
#> 4 544 -1 1004 -18 B6 N804JB 725 JFK
#> .. ... ... ... ... ... ... ... ...
#> dest
#> 1 IAH
#> 2 IAH
#> 3 MIA
#> 4 BQN
#> .. ...
#> Variables not shown: air_time (dbl), distance (dbl), hour (dbl), minute
#> (dbl)
</code></pre>
<p>This function works similarly to the <code>select</code> argument to the <code>base::subset()</code>. It's its own function in dplyr, because the dplyr philosophy is to have small functions that each do one thing well.</p>
<p>There are a number of helper functions you can use within <code>select()</code>, like <code>starts_with()</code>, <code>ends_with()</code>, <code>matches()</code> and <code>contains()</code>. These let you quickly match larger blocks of variable that meet some criterion. See <code>?select</code> for more details.</p>
<p>You can rename variables with <code>select()</code> by using named arguments:</p>
</td></tr>
<tr><td>
<pre><code class="r">select(flights, tail_num = tailnum)
</code></pre>
<pre><code>#> Source: local data frame [336,776 x 1]
#>
#> tail_num
#> 1 N14228
#> 2 N24211
#> 3 N619AA
#> 4 N804JB
#> .. ...
</code></pre>
</td><td>
<pre><code class="python">flights[['tail_num']].rename(columns={tailnum': 'tail_num'})
</code></pre>
<p>or</p>
<pre><code class="python">pd.DataFrame(dict(tail_num = flights.tailnum))
</code></pre>
<p>or something even worse</p>
</td><td>
<pre><code class="python">flights.ply_select(tail_num = X.tailnum)
</code></pre>
</td></tr>
<tr><td>
<p>But because <code>select()</code> drops all the variables not explicitly mentioned, it's not that use. Instead, use <code>rename()</code>:</p>
</td></tr>
<tr><td>
<pre><code class="r">rename(flights, tail_num = tailnum)
</code></pre>
<pre><code>#> Source: local data frame [336,776 x 16]
#>
#> year month day dep_time dep_delay arr_time arr_delay carrier tail_num
#> 1 2013 1 1 517 2 830 11 UA N14228
#> 2 2013 1 1 533 4 850 20 UA N24211
#> 3 2013 1 1 542 2 923 33 AA N619AA
#> 4 2013 1 1 544 -1 1004 -18 B6 N804JB
#> .. ... ... ... ... ... ... ... ... ...
#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl)
</code></pre>
</td><td>
<pre><code class="python">flights.rename(columns={'tailnum': 'tail_num'})
</code></pre>
</td><td>
<p>That's probably fine. But if you like...</p>
<pre><code class="python">flights.ply_select('-tailnum', tail_num = X.tailnum)
</code></pre>
</td></tr>
<tr><td>
<h2>Extract distinct (unique) rows</h2>
<p>A common use of <code>select()</code> is to find out what values are set of variables takes. This is particularly useful in conjunction with the <code>distinct()</code> verb which only returns the unique values in a table.</p>
</td></tr>
<tr><td>
<pre><code class="r">distinct(select(flights, tailnum))
</code></pre>
<pre><code>#> Source: local data frame [4,044 x 1]
#>
#> tailnum
#> 1 N14228
#> 2 N24211
#> 3 N619AA
#> 4 N804JB
#> .. ...
</code></pre>
</td><td>
<pre><code class="python">flights[['tailnum']].drop_duplicates()
</code></pre>
</td></tr>
<tr><td>
<pre><code class="r">distinct(select(flights, origin, dest))
</code></pre>
<pre><code>#> Source: local data frame [224 x 2]
#>
#> origin dest
#> 1 EWR IAH
#> 2 LGA IAH
#> 3 JFK MIA
#> 4 JFK BQN
#> .. ... ...
</code></pre>
</td><td>
<pre><code class="python">flights[['origin', 'dest']].drop_duplicates()
</code></pre>
</td></tr>
<tr><td>
<p>(This is very similar to <code>base::unique()</code> but should be much faster.)</p>
<h2>Add new columns with <code>mutate()</code></h2>
<p>As well as selecting from the set of existing columns, it's often useful to add new columns that are functions of existing columns. This is the job of <code>mutate()</code>:</p>
</td></tr>
<tr><td>
<pre><code class="r">mutate(flights,
gain = arr_delay - dep_delay,
speed = distance / air_time * 60)
</code></pre>
<pre><code>#> Source: local data frame [336,776 x 18]
#>
#> year month day dep_time dep_delay arr_time arr_delay carrier tailnum
#> 1 2013 1 1 517 2 830 11 UA N14228
#> 2 2013 1 1 533 4 850 20 UA N24211
#> 3 2013 1 1 542 2 923 33 AA N619AA
#> 4 2013 1 1 544 -1 1004 -18 B6 N804JB
#> .. ... ... ... ... ... ... ... ... ...
#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl), gain (dbl), speed (dbl)
</code></pre>
<p><code>dplyr::mutate()</code> works the same way as <code>plyr::mutate()</code> and similarly to <code>base::transform()</code>. The key difference between <code>mutate()</code> and <code>transform()</code> is that mutate allows you to refer to columns that you just created:</p>
</td><td>
<pre><code class="python">output = flights[:]
output['gain'] = flights.arr_delay - flights.dep_delay
ouptut['speed'] = flights.distance / flights.air_time * 60))
output
</code></pre>
<p>(For this to not be awkward, <code>flights</code> must be saved as a short variable name. The mutation step certainly cannot be chained onto previous steps without saving its input as a variable.)</p>
</td><td>
<pre><code class="python">flights.ply_select('*',
gain = X.arr_delay - X.dep_delay,
speed = X.distance / X.air_time * 60)
</code></pre>
</td></tr>
<tr><td>
<pre><code class="r">mutate(flights,
gain = arr_delay - dep_delay,
gain_per_hour = gain / (air_time / 60)
)
</code></pre>
<pre><code>#> Source: local data frame [336,776 x 18]
#>
#> year month day dep_time dep_delay arr_time arr_delay carrier tailnum
#> 1 2013 1 1 517 2 830 11 UA N14228
#> 2 2013 1 1 533 4 850 20 UA N24211
#> 3 2013 1 1 542 2 923 33 AA N619AA
#> 4 2013 1 1 544 -1 1004 -18 B6 N804JB
#> .. ... ... ... ... ... ... ... ... ...
#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl), gain (dbl),
#> gain_per_hour (dbl)
</code></pre>
<pre><code class="r">transform(flights,
gain = arr_delay - delay,
gain_per_hour = gain / (air_time / 60)
)
#> Error: object 'gain' not found
</code></pre>
<p>If you only want to keep the new variables, use <code>transmute()</code>:</p>
</td><td>
<pre><code class="python">output = flights[:]
output['gain'] = flights.arr_delay - flights.dep_delay
ouptut['gain_per_hour'] = output.gain / (flights.air_time / 60)
output
</code></pre>
</td><td>
<pre><code class="python">(flights
.ply_select('*', gain = X.arr_delay - X.dep_delay)
.ply_select('*', gain_per_hour = X.gain / (X.air_time / 60))
</code></pre>
<p>This is pretty awkward, because we do not have <code>mutate</code>/<code>transmute</code>'s "later fields can depend on earlier fields" support.</p>
<p>It's still better than raw pandas though. :)</p>
</td></tr>
<tr><td>
<pre><code class="r">transmute(flights,
gain = arr_delay - dep_delay,
gain_per_hour = gain / (air_time / 60)
)
</code></pre>
<pre><code>#> Source: local data frame [336,776 x 2]
#>
#> gain gain_per_hour
#> 1 9 2.379
#> 2 16 4.229
#> 3 31 11.625
#> 4 -17 -5.574
#> .. ... ...
</code></pre>
<h2>Summarise values with <code>summarise()</code></h2>
</td><td>
<pre><code class="python">output = pd.DataFrame()
output['gain'] = flights.arr_delay - flights.dep_delay
output['gain_per_hour'] = output.gain / (flights.air_time / 60)
output
</code></pre>
</td><td>
<pre><code class="python">(flights
.ply_select('*', gain = X.arr_delay - X.dep_delay)
.ply_select('gain', gain_per_hour = X.gain / (X.air_time / 60))
)
</code></pre>
<p>or</p>
<pre><code class="python">(flights
.ply_select('*', gain = X.arr_delay - X.dep_delay)
.ply_select('*', gain_per_hour = X.gain / (X.air_time / 60))
.ply_select('gain', 'gain_per_hour')
)
</code></pre>
</td></tr>
<tr><td>
<p>The last verb is <code>summarise()</code>, which collapses a data frame to a single row. It's not very useful yet:</p>
<pre><code class="r">summarise(flights,
delay = mean(dep_delay, na.rm = TRUE))
</code></pre>
<pre><code>#> Source: local data frame [1 x 1]
#>
#> delay
#> 1 12.64
</code></pre>
<p>This is exactly equivalent to <code>plyr::summarise()</code>.</p>
<h2>Randomly sample rows with <code>sample_n()</code> and <code>sample_frac()</code></h2>
<p>You can use <code>sample_n()</code> and <code>sample_frac()</code> to take a random sample of rows, either a fixed number for <code>sample_n()</code> or a fixed fraction for <code>sample_frac()</code>.</p>
<pre><code class="r">sample_n(flights, 10)
</code></pre>
<pre><code>#> Source: local data frame [10 x 16]
#>
#> year month day dep_time dep_delay arr_time arr_delay carrier tailnum
#> 1 2013 9 30 2104 -6 2323 -18 EV N17560
#> 2 2013 11 8 859 -1 1135 -4 DL N3771K
#> 3 2013 3 17 2110 73 2232 77 EV N14148
#> 4 2013 8 23 2013 2 2257 3 UA N87527
#> .. ... ... ... ... ... ... ... ... ...
#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl)
</code></pre>
<pre><code class="r">sample_frac(flights, 0.01)
</code></pre>
<pre><code>#> Source: local data frame [3,368 x 16]
#>
#> year month day dep_time dep_delay arr_time arr_delay carrier tailnum
#> 1 2013 8 17 533 -7 825 -15 AA N5DVAA
#> 2 2013 2 27 1828 28 1949 9 UA N821UA
#> 3 2013 8 15 1654 71 1921 41 UA N504UA
#> 4 2013 4 8 1724 -5 2008 -42 UA N839UA
#> .. ... ... ... ... ... ... ... ... ...
#> Variables not shown: flight (int), origin (chr), dest (chr), air_time
#> (dbl), distance (dbl), hour (dbl), minute (dbl)
</code></pre>
<p>Use <code>replace = TRUE</code> to perform a bootstrap sample, and optionally weight the sample with the <code>weight</code> argument.</p>
<h2>Commonalities</h2>
<p>You may have noticed that all these functions are very similar:</p>
<ul>
<li><p>The first argument is a data frame.</p></li>
<li><p>The subsequent arguments describe what to do with it, and you can refer
to columns in the data frame directly without using <code>$</code>.</p></li>
<li><p>The result is a new data frame</p></li>
</ul>
<p>Together these properties make it easy to chain together multiple simple steps to achieve a complex result.</p>
<p>These five functions provide the basis of a language of data manipulation. At the most basic level, you can only alter a tidy data frame in five useful ways: you can reorder the rows (<code>arrange()</code>), pick observations and variables of interest (<code>filter()</code> and <code>select()</code>), add new variables that are functions of existing variables (<code>mutate()</code>) or collapse many values to a summary (<code>summarise()</code>). The remainder of the language comes from applying the five functions to different types of data, like to grouped data, as described next.</p>
<h1>Grouped operations</h1>
<p>These verbs are useful, but they become really powerful when you combine them with the idea of “group by”, repeating the operation individually on groups of observations within the dataset. In dplyr, you use the <code>group_by()</code> function to describe how to break a dataset down into groups of rows. You can then use the resulting object in exactly the same functions as above; they'll automatically work “by group” when the input is a grouped.</p>
<p>The verbs are affected by grouping as follows:</p>
<ul>
<li><p>grouped <code>select()</code> is the same ungrouped <code>select()</code>, excepted that retains
grouping variables are always retained. </p></li>
<li><p>grouped <code>arrange()</code> orders first by grouping variables</p></li>
<li><p><code>mutate()</code> and <code>filter()</code> are most useful in conjunction with window
functions (like <code>rank()</code>, or <code>min(x) == x</code>), and are described in detail in
<code>vignette("window-function")</code>.</p></li>
<li><p><code>sample_n()</code> and <code>sample_frac()</code> sample the specified number/fraction of
rows in each group.</p></li>
<li><p><code>slice()</code> extracts rows within each group.</p></li>
<li><p><code>summarise()</code> is easy to understand and very useful, and is described in
more detail below.</p></li>
</ul>
<p>In the following example, we split the complete dataset into individual planes and then summarise each plane by counting the number of flights (<code>count = n()</code>) and computing the average distance (<code>dist = mean(Distance, na.rm = TRUE)</code>) and delay (<code>delay = mean(ArrDelay, na.rm = TRUE)</code>). We then use ggplot2 to display the output.</p>
</td></tr>
<tr><td>
<pre><code class="r">planes <- group_by(flights, tailnum)
delay <- summarise(planes,
count = n(),
dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE))
delay <- filter(delay, count > 20, dist < 2000)
# Interestingly, the average delay is only slightly related to the
# average distance flown by a plane.
ggplot(delay, aes(dist, delay)) +
geom_point(aes(size = count), alpha = 1/2) +
geom_smooth() +
scale_size_area()
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-20"/> </p>
</td><td>
<pre><code class="python">planes = flights.groupby('tailnum')
delay = pd.DataFrame(dict(
count = planes.size(),
dist = planes.distance.mean(),
delay = planes.arr_delay.mean()
))
delay_filtered = delay[(delay.count > 20) & (delay.dist < 2000)]
</code></pre>
<p>Note that both of these intermediate values are necessary. <code>planes</code> must be saved since it is used multiple times to construct the new dataframe, and the first version of <code>delay</code> must be saved since it is used in the filter conditions.</p>
<p>Use of <code>.agg</code> and <code>.rename</code> together could keep us from needing to save <code>planes</code>:</p>
<pre><code class="python">delay = (flights
.groupby('tailnum')
.agg({
'tailnum': 'count',
'distance': 'mean',
'arr_delay': 'mean'
})
.rename(columns={
'tailnum': 'count',
'distance': 'dist',
'arr_delay': 'delay'
})
)
delay_filtered = delay[(delay.count > 20) & (delay.dist < 2000)]
</code></pre>
<p>This is verbose and awkward. (Also, it wouldn't work if we wanted multiple aggregates of a single column.)</p>
</td><td>
<pre><code class="python">delay = (flights
.groupby('tailnum')
.ply_select(
count = X.size(),
dist = X.distance.mean(),
delay = X.arr_delay.mean()
)
.ply_where(X.count > 20, X.dist < 2000)
)
</code></pre>
</td></tr>
<tr><td>
<p>You use <code>summarise()</code> with <strong>aggregate functions</strong>, which take a vector of values, and return a single number. There are many useful functions in base R like <code>min()</code>, <code>max()</code>, <code>mean()</code>, <code>sum()</code>, <code>sd()</code>, <code>median()</code>, and <code>IQR()</code>. dplyr provides a handful of others:</p>
<ul>
<li><p><code>n()</code>: number of observations in the current group</p></li>
<li><p><code>n_distinct(x)</code>: count the number of unique values in <code>x</code>.</p></li>
<li><p><code>first(x)</code>, <code>last(x)</code> and <code>nth(x, n)</code> - these work
similarly to <code>x[1]</code>, <code>x[length(x)]</code>, and <code>x[n]</code> but give you more control
of the result if the value isn't present.</p></li>
</ul>
<p>For example, we could use these to find the number of planes and the number of flights that go to each possible destination:</p>
<pre><code class="r">destinations <- group_by(flights, dest)
summarise(destinations,
planes = n_distinct(tailnum),
flights = n()
)
</code></pre>
<pre><code>#> Source: local data frame [105 x 3]
#>
#> dest planes flights
#> 1 ABQ 108 254
#> 2 ACK 58 265
#> 3 ALB 172 439
#> 4 ANC 6 8
#> .. ... ... ...
</code></pre>