diff --git a/examples/summable.v b/examples/summable.v index 9d0659b..b208d6d 100644 --- a/examples/summable.v +++ b/examples/summable.v @@ -68,7 +68,7 @@ Notation "'Σ' ue" := (sum_xnnR ue) (at level 35) : xnnR_scope. Axiom sum_xnnR_add : forall u v : seq_xnnR, (Σ (u + v))%xnnR = (Σ u + Σ v)%xnnR. -Definition isFin (re : xnnR) : bool := +Definition isFin (re : xnnR) : Bool := match re with Fin _ => true | _ => false end. (* summability is defined in terms of infinite sums *) diff --git a/theories/Param_bool.v b/theories/Param_bool.v index c97614e..0f73420 100644 --- a/theories/Param_bool.v +++ b/theories/Param_bool.v @@ -18,19 +18,13 @@ Require Import HoTT_additions Hierarchy. Set Universe Polymorphism. Unset Universe Minimization ToSet. -Inductive bool : Type := false | true. +Inductive BoolR : Bool -> Bool -> Type := + | falseR : BoolR false false + | trueR : BoolR true true. -(* Notation bool := Datatypes.bool. -Notation false := Datatypes.false. -Notation true := Datatypes.true. *) +Definition map_Bool : Bool -> Bool := id. -Inductive boolR : bool -> bool -> Type := - | falseR : boolR false false - | trueR : boolR true true. - -Definition map_bool : bool -> bool := id. - -Definition map_in_R_bool {b b' : bool} (e : map_bool b = b') : boolR b b' := +Definition map_in_R_Bool {b b' : Bool} (e : map_Bool b = b') : BoolR b b' := match e with | idpath => match b with @@ -39,56 +33,56 @@ Definition map_in_R_bool {b b' : bool} (e : map_bool b = b') : boolR b b' := end end. -Definition R_in_map_bool {b b' : bool} (bR : boolR b b') : map_bool b = b' := +Definition R_in_map_Bool {b b' : Bool} (bR : BoolR b b') : map_Bool b = b' := match bR with | falseR => idpath | trueR => idpath end. -Definition R_in_mapK_bool {b b' : bool} (bR : boolR b b') : - map_in_R_bool (R_in_map_bool bR) = bR := +Definition R_in_mapK_Bool {b b' : Bool} (bR : BoolR b b') : + map_in_R_Bool (R_in_map_Bool bR) = bR := match bR with | falseR => idpath | trueR => idpath end. -Definition Param_bool_sym {b b' : bool} (bR : boolR b b') : boolR b' b := +Definition Param_Bool_sym {b b' : Bool} (bR : BoolR b b') : BoolR b' b := match bR with | falseR => falseR | trueR => trueR end. -Definition Param_bool_sym_inv {b b' : bool} (bR : boolR b b') : - Param_bool_sym (Param_bool_sym bR) = bR := +Definition Param_Bool_sym_inv {b b' : Bool} (bR : BoolR b b') : + Param_Bool_sym (Param_Bool_sym bR) = bR := match bR with | falseR => idpath | trueR => idpath end. -Definition boolR_sym : forall (b b' : bool), sym_rel boolR b b' <~> boolR b b'. +Definition BoolR_sym : forall (b b' : Bool), sym_rel BoolR b b' <~> BoolR b b'. Proof. intros b b'. unshelve eapply equiv_adjointify. - - apply Param_bool_sym. - - apply Param_bool_sym. - - intro bR. apply Param_bool_sym_inv. - - intro bR. apply Param_bool_sym_inv. + - apply Param_Bool_sym. + - apply Param_Bool_sym. + - intro bR. apply Param_Bool_sym_inv. + - intro bR. apply Param_Bool_sym_inv. Defined. -Definition Map4_bool : Map4.Has boolR. +Definition Map4_Bool : Map4.Has BoolR. Proof. unshelve econstructor. - - exact map_bool. - - exact @map_in_R_bool. - - exact @R_in_map_bool. - - exact @R_in_mapK_bool. + - exact map_Bool. + - exact @map_in_R_Bool. + - exact @R_in_map_Bool. + - exact @R_in_mapK_Bool. Defined. -Definition Param44_bool : Param44.Rel bool bool. +Definition Param44_Bool : Param44.Rel Bool Bool. Proof. unshelve econstructor. - - exact boolR. - - exact Map4_bool. - - apply (fun e => @eq_Map4 _ _ (sym_rel boolR) boolR e Map4_bool). - apply boolR_sym. + - exact BoolR. + - exact Map4_Bool. + - apply (fun e => @eq_Map4 _ _ (sym_rel BoolR) BoolR e Map4_Bool). + apply BoolR_sym. Defined. diff --git a/theories/Trocq.v b/theories/Trocq.v index 7bee890..8900931 100644 --- a/theories/Trocq.v +++ b/theories/Trocq.v @@ -15,4 +15,4 @@ From elpi Require Export elpi. From HoTT Require Export HoTT. From Trocq Require Export HoTT_additions Hierarchy Param_Type Param_forall Param_arrow Database Param - Param_paths Vernac Common Param_nat Param_trans Param_bool. + Param_paths Vernac Common Param_nat Param_trans Param_Bool.