-
Notifications
You must be signed in to change notification settings - Fork 120
/
Copy pathgooglenet.py
173 lines (147 loc) · 6.96 KB
/
googlenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: googlenet.py
# Author: Qian Ge <[email protected]>
import numpy as np
import tensorflow as tf
from src.nets.base import BaseModel
import src.models.layers as L
import src.models.inception_module as module
INIT_W = tf.keras.initializers.he_normal()
class GoogLeNet(BaseModel):
""" base model of GoogleNet for image classification """
def __init__(self, n_channel, n_class, pre_trained_path=None,
bn=False, wd=0, conv_trainable=True, fc_trainable=True,
sub_imagenet_mean=True):
self._n_channel = n_channel
self.n_class = n_class
self._bn = bn
self._wd = wd
self._conv_trainable = conv_trainable
self._fc_trainable = fc_trainable
self._sub_imagenet_mean = sub_imagenet_mean
self._pretrained_dict = None
if pre_trained_path:
self._pretrained_dict = np.load(
pre_trained_path, encoding='latin1', allow_pickle=True).item()
self.layers = {}
def _create_train_input(self):
self.image = tf.placeholder(
tf.float32, [None, None, None, self._n_channel], name='image')
self.label = tf.placeholder(tf.int64, [None], 'label')
self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')
self.lr = tf.placeholder(tf.float32, name='lr')
def _create_test_input(self):
self.image = tf.placeholder(
tf.float32, [None, None, None, self._n_channel], name='image')
self.label = tf.placeholder(tf.int64, [None], 'label')
self.keep_prob = 1.
def create_train_model(self):
self.set_is_training(is_training=True)
self._create_train_input()
if self._sub_imagenet_mean:
net_input = module.sub_rgb2bgr_mean(self.image)
else:
net_input = self.image
with tf.variable_scope('conv_layers', reuse=tf.AUTO_REUSE):
self.layers['conv_out'] = self._conv_layers(net_input)
with tf.variable_scope('inception_layers', reuse=tf.AUTO_REUSE):
self.layers['inception_out'] = self._inception_layers(self.layers['conv_out'])
with tf.variable_scope('fc_layers', reuse=tf.AUTO_REUSE):
self.layers['logits'] = self._fc_layers(self.layers['inception_out'])
with tf.variable_scope('auxiliary_classifier_0'):
self.layers['auxiliary_logits_0'] = self._auxiliary_classifier(
self.layers['inception_4a'])
with tf.variable_scope('auxiliary_classifier_1'):
self.layers['auxiliary_logits_1'] = self._auxiliary_classifier(
self.layers['inception_4d'])
def create_test_model(self):
self.set_is_training(is_training=False)
self._create_test_input()
if self._sub_imagenet_mean:
net_input = module.sub_rgb2bgr_mean(self.image)
else:
net_input = self.image
with tf.variable_scope('conv_layers', reuse=tf.AUTO_REUSE):
self.layers['conv_out'] = self._conv_layers(net_input)
with tf.variable_scope('inception_layers', reuse=tf.AUTO_REUSE):
self.layers['inception_out'] = self._inception_layers(self.layers['conv_out'])
with tf.variable_scope('fc_layers', reuse=tf.AUTO_REUSE):
self.layers['logits'] = self._fc_layers(self.layers['inception_out'])
self.layers['top_5'] = tf.nn.top_k(
tf.nn.softmax(self.layers['logits']), k=5, sorted=True)
def _conv_layers(self, inputs):
conv_out = module.inception_conv_layers(
layer_dict=self.layers, inputs=inputs,
pretrained_dict=self._pretrained_dict,
bn=self._bn, wd=self._wd, init_w=INIT_W,
is_training=self.is_training, trainable=self._conv_trainable)
return conv_out
def _inception_layers(self, inputs):
inception_out = module.inception_layers(
layer_dict=self.layers, inputs=inputs,
pretrained_dict=self._pretrained_dict,
bn=self._bn, wd=self._wd, init_w=INIT_W,
is_training=self.is_training, trainable=self._conv_trainable)
return inception_out
def _fc_layers(self, inputs):
fc_out = module.inception_fc(
layer_dict=self.layers, n_class=self.n_class, keep_prob=self.keep_prob,
inputs=inputs, pretrained_dict=self._pretrained_dict,
bn=self._bn, init_w=INIT_W, trainable=self._fc_trainable,
is_training=self.is_training, wd=self._wd)
return fc_out
def _auxiliary_classifier(self, inputs):
logits = module.auxiliary_classifier(
layer_dict=self.layers, n_class=self.n_class, keep_prob=self.keep_prob,
inputs=inputs, pretrained_dict=None, is_training=self.is_training,
bn=self._bn, init_w=INIT_W, trainable=self._fc_trainable, wd=self._wd)
return logits
def _get_loss(self):
with tf.name_scope('loss'):
labels = self.label
logits = self.layers['logits']
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels,
logits=logits,
name='cross_entropy')
cross_entropy = tf.reduce_mean(cross_entropy)
if self.is_training:
auxilarity_loss = self._get_auxiliary_loss(0) + self._get_auxiliary_loss(1)
return cross_entropy + 0.3 * auxilarity_loss
else:
return cross_entropy
def _get_auxiliary_loss(self, loss_id):
with tf.name_scope('auxilarity_loss_{}'.format(loss_id)):
labels = self.label
logits = self.layers['auxiliary_logits_{}'.format(loss_id)]
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels,
logits=logits,
name='cross_entropy')
return tf.reduce_mean(cross_entropy)
def _get_optimizer(self):
return tf.train.AdamOptimizer(self.lr)
def get_accuracy(self):
with tf.name_scope('accuracy'):
prediction = tf.argmax(self.layers['logits'], axis=1)
correct_prediction = tf.equal(prediction, self.label)
return tf.reduce_mean(
tf.cast(correct_prediction, tf.float32),
name = 'result')
class GoogLeNet_cifar(GoogLeNet):
def _fc_layers(self, inputs):
fc_out = module.inception_fc(
layer_dict=self.layers, n_class=self.n_class, keep_prob=self.keep_prob,
inputs=inputs, pretrained_dict=None,
bn=self._bn, init_w=INIT_W, trainable=self._fc_trainable,
is_training=self.is_training, wd=self._wd)
return fc_out
def _conv_layers(self, inputs):
conv_out = module.inception_conv_layers_cifar(
layer_dict=self.layers, inputs=inputs,
pretrained_dict=None,
bn=self._bn, wd=self._wd, init_w=INIT_W,
is_training=self.is_training, trainable=self._conv_trainable,
conv_stride=1)
return conv_out