-
Notifications
You must be signed in to change notification settings - Fork 120
/
Copy pathinception_module.py
202 lines (161 loc) · 8.57 KB
/
inception_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: inception_module.py
# Author: Qian Ge <[email protected]>
import numpy as np
import tensorflow as tf
from tensorflow.contrib.framework import add_arg_scope
import src.models.layers as L
def sub_rgb2bgr_mean(inputs):
with tf.name_scope('sub_mean'):
red, green, blue = tf.split(axis=3,
num_or_size_splits=3,
value=inputs)
imagenet_mean = [103.939, 116.779, 123.68]
input_bgr = tf.concat(axis=3, values=[
blue - imagenet_mean[0],
green - imagenet_mean[1],
red - imagenet_mean[2],
])
return input_bgr
@add_arg_scope
def inception_layer(conv_11_size, conv_33_reduce_size, conv_33_size,
conv_55_reduce_size, conv_55_size, pool_size,
layer_dict, inputs=None,
bn=False, wd=0, init_w=None,
pretrained_dict=None, trainable=True, is_training=True,
name='inception'):
if inputs is None:
inputs = layer_dict['cur_input']
layer_dict['cur_input'] = inputs
arg_scope = tf.contrib.framework.arg_scope
with arg_scope([L.conv], layer_dict=layer_dict, pretrained_dict=pretrained_dict,
bn=bn, nl=tf.nn.relu, init_w=init_w, trainable=trainable,
is_training=is_training, wd=wd, add_summary=False):
conv_11 = L.conv(filter_size=1, out_dim=conv_11_size,
inputs=inputs, name='{}_1x1'.format(name))
L.conv(filter_size=1, out_dim=conv_33_reduce_size,
inputs=inputs, name='{}_3x3_reduce'.format(name))
conv_33 = L.conv(filter_size=3, out_dim=conv_33_size,
name='{}_3x3'.format(name))
L.conv(filter_size=1, out_dim=conv_55_reduce_size,
inputs=inputs, name='{}_5x5_reduce'.format(name))
conv_55 = L.conv(filter_size=5, out_dim=conv_55_size,
name='{}_5x5'.format(name))
L.max_pool(layer_dict=layer_dict, inputs=inputs, stride=1,
filter_size=3, padding='SAME', name='{}_pool'.format(name))
convpool = L.conv(filter_size=1, out_dim=pool_size,
name='{}_pool_proj'.format(name))
output = tf.concat([conv_11, conv_33, conv_55, convpool], 3,
name='{}_concat'.format(name))
layer_dict['cur_input'] = output
layer_dict[name] = output
return output
def inception_conv_layers(layer_dict, inputs=None, pretrained_dict=None,
bn=False, wd=0, init_w=None,
is_training=True, trainable=True,
conv_stride=2):
if inputs is None:
inputs = layer_dict['cur_input']
layer_dict['cur_input'] = inputs
arg_scope = tf.contrib.framework.arg_scope
with arg_scope([L.conv], layer_dict=layer_dict, pretrained_dict=pretrained_dict,
bn=bn, nl=tf.nn.relu, init_w=init_w, trainable=trainable,
is_training=is_training, wd=wd, add_summary=False):
conv1 = L.conv(7, 64, inputs=inputs, name='conv1_7x7_s2', stride=conv_stride)
padding1 = tf.constant([[0, 0], [0, 1], [0, 1], [0, 0]])
conv1_pad = tf.pad(conv1, padding1, 'CONSTANT')
pool1, _ = L.max_pool(
layer_dict=layer_dict, inputs=conv1_pad, stride=2,
filter_size=3, padding='VALID', name='pool1')
pool1_lrn = tf.nn.local_response_normalization(
pool1, depth_radius=2, alpha=2e-05, beta=0.75,
name='pool1_lrn')
conv2_reduce = L.conv(1, 64, inputs=pool1_lrn, name='conv2_3x3_reduce')
conv2 = L.conv(3, 192, inputs=conv2_reduce, name='conv2_3x3')
padding2 = tf.constant([[0, 0], [0, 1], [0, 1], [0, 0]])
conv2_pad = tf.pad(conv2, padding2, 'CONSTANT')
pool2, _ = L.max_pool(
layer_dict=layer_dict, inputs=conv2_pad, stride=2,
filter_size=3, padding='VALID', name='pool2')
pool2_lrn = tf.nn.local_response_normalization(
pool2, depth_radius=2, alpha=2e-05, beta=0.75,
name='pool2_lrn')
layer_dict['cur_input'] = pool2_lrn
return pool2_lrn
def inception_layers(layer_dict, inputs=None, pretrained_dict=None,
bn=False, init_w=None, wd=0,
trainable=True, is_training=True):
if inputs is not None:
layer_dict['cur_input'] = inputs
arg_scope = tf.contrib.framework.arg_scope
with arg_scope([inception_layer], layer_dict=layer_dict,
pretrained_dict=pretrained_dict,
bn=bn, init_w=init_w, trainable=trainable,
is_training=is_training, wd=wd):
inception_layer(64, 96, 128, 16, 32, 32, name='inception_3a')
inception_layer(128, 128, 192, 32, 96, 64, name='inception_3b')
L.max_pool(layer_dict, stride=2, filter_size=3, name='pool3')
inception_layer(192, 96, 208, 16, 48, 64, name='inception_4a')
inception_layer(160, 112, 224, 24, 64, 64, name='inception_4b')
inception_layer(128, 128, 256, 24, 64, 64, name='inception_4c')
inception_layer(112, 144, 288, 32, 64, 64, name='inception_4d')
inception_layer(256, 160, 320, 32, 128, 128, name='inception_4e')
L.max_pool(layer_dict, stride=2, filter_size=3, name='pool4')
inception_layer(256, 160, 320, 32, 128, 128, name='inception_5a')
inception_layer(384, 192, 384, 48, 128, 128, name='inception_5b')
return layer_dict['cur_input']
def inception_fc(layer_dict, n_class, keep_prob=1., inputs=None,
pretrained_dict=None, is_training=True,
bn=False, init_w=None, trainable=True, wd=0):
if inputs is not None:
layer_dict['cur_input'] = inputs
layer_dict['cur_input'] = L.global_avg_pool(layer_dict['cur_input'], keepdims=True)
# layer_dict['cur_input'] = tf.expand_dims(layer_dict['cur_input'], [1, 2])
L.drop_out(layer_dict, is_training, keep_prob=keep_prob)
L.conv(filter_size=1, out_dim=n_class, layer_dict=layer_dict,
pretrained_dict=pretrained_dict, trainable=trainable,
bn=False, init_w=init_w, wd=wd, is_training=is_training,
name='loss3_classifier')
layer_dict['cur_input'] = tf.squeeze(layer_dict['cur_input'], [1, 2])
return layer_dict['cur_input']
def inception_conv_layers_cifar(layer_dict, inputs=None, pretrained_dict=None,
bn=False, wd=0, init_w=None,
is_training=True, trainable=True,
conv_stride=2):
if inputs is None:
inputs = layer_dict['cur_input']
layer_dict['cur_input'] = inputs
arg_scope = tf.contrib.framework.arg_scope
with arg_scope([L.conv], layer_dict=layer_dict, pretrained_dict=pretrained_dict,
bn=bn, nl=tf.nn.relu, init_w=init_w, trainable=trainable,
is_training=is_training, wd=wd, add_summary=False):
L.conv(7, 64, name='conv1_7x7_s2', stride=conv_stride)
# L.max_pool(layer_dict=layer_dict, stride=2,
# filter_size=3, padding='VALID', name='pool1')
L.conv(1, 64, name='conv2_3x3_reduce')
L.conv(3, 192, name='conv2_3x3')
# L.max_pool(layer_dict=layer_dict, stride=2,
# filter_size=3, padding='VALID', name='pool2')
return layer_dict['cur_input']
def auxiliary_classifier(layer_dict, n_class, keep_prob=1., inputs=None,
pretrained_dict=None, is_training=True,
bn=False, init_w=None, trainable=True, wd=0):
if inputs is not None:
layer_dict['cur_input'] = inputs
# layer_dict['cur_input'] = tf.layers.average_pooling2d(
# inputs=layer_dict['cur_input'],
# pool_size=5, strides=3,
# padding='valid', name='averagepool')
layer_dict['cur_input'] = L.global_avg_pool(layer_dict['cur_input'], keepdims=True)
arg_scope = tf.contrib.framework.arg_scope
with arg_scope([L.conv, L.linear], layer_dict=layer_dict,
bn=bn, init_w=init_w, trainable=trainable,
is_training=is_training, wd=wd, add_summary=False):
L.conv(1, 128, name='conv', stride=1, nl=tf.nn.relu)
L.linear(out_dim=512, name='fc_1', nl=tf.nn.relu)
L.drop_out(layer_dict, is_training, keep_prob=keep_prob)
L.linear(out_dim=512, name='fc_2', nl=tf.nn.relu)
L.drop_out(layer_dict, is_training, keep_prob=keep_prob)
L.linear(out_dim=n_class, name='classifier', bn=False)
return layer_dict['cur_input']