-
Notifications
You must be signed in to change notification settings - Fork 120
/
Copy pathinception_cifar.py
159 lines (136 loc) · 5.94 KB
/
inception_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: inception_cifar.py
# Author: Qian Ge <[email protected]>
import os
import sys
import platform
import argparse
import numpy as np
import tensorflow as tf
sys.path.append('../')
import loader as loader
from src.nets.googlenet import GoogLeNet_cifar
from src.helper.trainer import Trainer
from src.helper.evaluator import Evaluator
DATA_PATH = '/home/qge2/workspace/data/dataset/cifar/'
SAVE_PATH = '/home/qge2/workspace/data/out/googlenet/cifar/'
PRETRINED_PATH = '/home/qge2/workspace/data/pretrain/inception/googlenet.npy'
IM_PATH = '../data/cifar/'
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--train', action='store_true',
help='Train the model')
parser.add_argument('--eval', action='store_true',
help='Evaluate the model')
parser.add_argument('--predict', action='store_true',
help='Get prediction result')
parser.add_argument('--finetune', action='store_true',
help='Fine tuning the model')
parser.add_argument('--load', type=int, default=99,
help='Epoch id of pre-trained model')
parser.add_argument('--lr', type=float, default=1e-3,
help='Initial learning rate')
parser.add_argument('--bsize', type=int, default=128,
help='Batch size')
parser.add_argument('--keep_prob', type=float, default=0.4,
help='Keep probability for dropout')
parser.add_argument('--maxepoch', type=int, default=100,
help='Max number of epochs for training')
parser.add_argument('--im_name', type=str, default='.png',
help='Part of image name')
return parser.parse_args()
def train():
FLAGS = get_args()
# Create Dataflow object for training and testing set
train_data, valid_data = loader.load_cifar(
cifar_path=DATA_PATH, batch_size=FLAGS.bsize, subtract_mean=True)
pre_trained_path=None
if FLAGS.finetune:
# Load the pre-trained model (on ImageNet)
# for convolutional layers if fine tuning
pre_trained_path = PRETRINED_PATH
# Create a training model
train_model = GoogLeNet_cifar(
n_channel=3, n_class=10, pre_trained_path=pre_trained_path,
bn=True, wd=0, sub_imagenet_mean=False,
conv_trainable=True, fc_trainable=True)
train_model.create_train_model()
# Create a validation model
valid_model = GoogLeNet_cifar(
n_channel=3, n_class=10, bn=True, sub_imagenet_mean=False)
valid_model.create_test_model()
# create a Trainer object for training control
trainer = Trainer(train_model, valid_model, train_data, init_lr=FLAGS.lr)
with tf.Session() as sess:
writer = tf.summary.FileWriter(SAVE_PATH)
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
writer.add_graph(sess.graph)
for epoch_id in range(FLAGS.maxepoch):
# train one epoch
trainer.train_epoch(sess, keep_prob=FLAGS.keep_prob, summary_writer=writer)
# test the model on validation set after each epoch
trainer.valid_epoch(sess, dataflow=valid_data, summary_writer=writer)
saver.save(sess, '{}inception-cifar-epoch-{}'.format(SAVE_PATH, epoch_id))
saver.save(sess, '{}inception-cifar-epoch-{}'.format(SAVE_PATH, epoch_id))
writer.close()
def evaluate():
FLAGS = get_args()
# Create Dataflow object for training and testing set
train_data, valid_data = loader.load_cifar(
cifar_path=DATA_PATH, batch_size=FLAGS.bsize, subtract_mean=True)
# Create a validation model
valid_model = GoogLeNet_cifar(
n_channel=3, n_class=10, bn=True, sub_imagenet_mean=False)
valid_model.create_test_model()
# create a Evaluator object for evaluation
evaluator = Evaluator(valid_model)
with tf.Session() as sess:
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
# load pre-trained model cifar
saver.restore(sess, '{}inception-cifar-epoch-{}'.format(SAVE_PATH, FLAGS.load))
print('training set:', end='')
evaluator.accuracy(sess, train_data)
print('testing set:', end='')
evaluator.accuracy(sess, valid_data)
def predict():
FLAGS = get_args()
# Read Cifar label into a dictionary
label_dict = loader.load_label_dict(dataset='cifar')
# Create a Dataflow object for test images
image_data = loader.read_image(
im_name=FLAGS.im_name, n_channel=3,
data_dir=IM_PATH, batch_size=1, rescale=False)
# Create a testing GoogLeNet model
test_model = GoogLeNet_cifar(
n_channel=3, n_class=10, bn=True, sub_imagenet_mean=False)
test_model.create_test_model()
with tf.Session() as sess:
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
saver.restore(sess, '{}inception-cifar-epoch-{}'.format(SAVE_PATH, FLAGS.load))
while image_data.epochs_completed < 1:
# read batch files
batch_data = image_data.next_batch_dict()
# get batch file names
batch_file_name = image_data.get_batch_file_name()[0]
# get prediction results
pred = sess.run(test_model.layers['top_5'],
feed_dict={test_model.image: batch_data['image']})
# display results
for re_prob, re_label, file_name in zip(pred[0], pred[1], batch_file_name):
print('===============================')
print('[image]: {}'.format(file_name))
for i in range(5):
print('{}: probability: {:.02f}, label: {}'
.format(i+1, re_prob[i], label_dict[re_label[i]]))
if __name__ == "__main__":
FLAGS = get_args()
if FLAGS.train:
train()
if FLAGS.eval:
evaluate()
if FLAGS.predict:
predict()